Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Alright, let's work through the problem step-by-step.
### Part (a):
1. Setting Up the Variables:
- Let the smaller number be [tex]\( b \)[/tex].
- The larger number is [tex]\( 5 \)[/tex] times the smaller number, so we can represent it as [tex]\( a = 5b \)[/tex].
2. Formulating the Equation with the Condition:
- According to the problem, if we add 24 to both numbers, the larger new number becomes twice the smaller new number. Mathematically, this can be expressed as:
[tex]\[ (a + 24) = 2(b + 24) \][/tex]
3. Substituting for [tex]\( a \)[/tex]:
- We know that [tex]\( a = 5b \)[/tex]. Substituting this into the equation gives:
[tex]\[ (5b + 24) = 2(b + 24) \][/tex]
4. Solving for [tex]\( b \)[/tex]:
- Expand and simplify the equation:
[tex]\[ 5b + 24 = 2b + 48 \][/tex]
- Subtract [tex]\( 2b \)[/tex] from both sides:
[tex]\[ 3b + 24 = 48 \][/tex]
- Subtract 24 from both sides:
[tex]\[ 3b = 24 \][/tex]
- Divide by 3:
[tex]\[ b = 8 \][/tex]
5. Finding [tex]\( a \)[/tex]:
- Substitute [tex]\( b = 8 \)[/tex] back into the equation [tex]\( a = 5b \)[/tex]:
[tex]\[ a = 5 \times 8 = 40 \][/tex]
So, the numbers are:
- The smaller number, [tex]\( b \)[/tex], is [tex]\( 8 \)[/tex].
- The larger number, [tex]\( a \)[/tex], is [tex]\( 40 \)[/tex].
Thus, the two numbers are 8 and 40.
### Part (b):
You mentioned "One of the digits of a 2-digit numb" but did not complete the sentence or provide a clear question. If you can provide the complete question, I'll be happy to help solve it!
### Part (a):
1. Setting Up the Variables:
- Let the smaller number be [tex]\( b \)[/tex].
- The larger number is [tex]\( 5 \)[/tex] times the smaller number, so we can represent it as [tex]\( a = 5b \)[/tex].
2. Formulating the Equation with the Condition:
- According to the problem, if we add 24 to both numbers, the larger new number becomes twice the smaller new number. Mathematically, this can be expressed as:
[tex]\[ (a + 24) = 2(b + 24) \][/tex]
3. Substituting for [tex]\( a \)[/tex]:
- We know that [tex]\( a = 5b \)[/tex]. Substituting this into the equation gives:
[tex]\[ (5b + 24) = 2(b + 24) \][/tex]
4. Solving for [tex]\( b \)[/tex]:
- Expand and simplify the equation:
[tex]\[ 5b + 24 = 2b + 48 \][/tex]
- Subtract [tex]\( 2b \)[/tex] from both sides:
[tex]\[ 3b + 24 = 48 \][/tex]
- Subtract 24 from both sides:
[tex]\[ 3b = 24 \][/tex]
- Divide by 3:
[tex]\[ b = 8 \][/tex]
5. Finding [tex]\( a \)[/tex]:
- Substitute [tex]\( b = 8 \)[/tex] back into the equation [tex]\( a = 5b \)[/tex]:
[tex]\[ a = 5 \times 8 = 40 \][/tex]
So, the numbers are:
- The smaller number, [tex]\( b \)[/tex], is [tex]\( 8 \)[/tex].
- The larger number, [tex]\( a \)[/tex], is [tex]\( 40 \)[/tex].
Thus, the two numbers are 8 and 40.
### Part (b):
You mentioned "One of the digits of a 2-digit numb" but did not complete the sentence or provide a clear question. If you can provide the complete question, I'll be happy to help solve it!
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.