Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve this problem, follow these steps:
1. Determine the Total Number of Cards:
We have 20 cards numbered from 1 to 20.
2. Identify Cards Containing the Digit '1':
We need to find out how many of these cards have the digit '1' in their number.
- The cards with a '1' are: 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.
- Counting these, we have 11 cards that contain the digit '1'.
3. Calculate the Number of Cards Without the Digit '1':
- Total cards: 20
- Cards with '1': 11
- Cards without '1': 20 - 11 = 9
4. Calculate the Probability:
The probability that a randomly chosen card does not have the digit '1' is the ratio of the number of cards without '1' to the total number of cards.
- Number of cards without '1': 9
- Total number of cards: 20
Therefore, the probability is [tex]\( \frac{9}{20} \)[/tex].
5. Convert the Probability to Decimal Form:
[tex]\( \frac{9}{20} = 0.45 \)[/tex]
Thus, the probability that a randomly chosen card does not have the digit '1' in its number is 0.45.
1. Determine the Total Number of Cards:
We have 20 cards numbered from 1 to 20.
2. Identify Cards Containing the Digit '1':
We need to find out how many of these cards have the digit '1' in their number.
- The cards with a '1' are: 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.
- Counting these, we have 11 cards that contain the digit '1'.
3. Calculate the Number of Cards Without the Digit '1':
- Total cards: 20
- Cards with '1': 11
- Cards without '1': 20 - 11 = 9
4. Calculate the Probability:
The probability that a randomly chosen card does not have the digit '1' is the ratio of the number of cards without '1' to the total number of cards.
- Number of cards without '1': 9
- Total number of cards: 20
Therefore, the probability is [tex]\( \frac{9}{20} \)[/tex].
5. Convert the Probability to Decimal Form:
[tex]\( \frac{9}{20} = 0.45 \)[/tex]
Thus, the probability that a randomly chosen card does not have the digit '1' in its number is 0.45.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.