Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve this problem, follow these steps closely:
### Step 1: Identify the Coordinates of Points A, B, and C
- Point A has coordinates (1, 1)
- Point B has coordinates (2, 6)
- Point C has coordinates (4, 2)
### Step 2: Calculate the Midpoint [tex]\(M\)[/tex] of Line Segment BC
The midpoint M of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] can be calculated using the midpoint formula:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Applying this formula to points B and C:
[tex]\[ M = \left( \frac{2 + 4}{2}, \frac{6 + 2}{2} \right) \][/tex]
[tex]\[ M = (3.0, 4.0) \][/tex]
### Step 3: Determine the Slope of Line AM
The slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using point A (1, 1) and the midpoint M (3.0, 4.0):
[tex]\[ m = \frac{4.0 - 1}{3.0 - 1} \][/tex]
[tex]\[ m = \frac{3.0}{2.0} \][/tex]
[tex]\[ m = 1.5 \][/tex]
### Step 4: Use the Point-Slope Form to Calculate the Y-Intercept
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
We can use point A (1, 1) and the slope [tex]\( m = 1.5 \)[/tex]:
[tex]\[ y - 1 = 1.5(x - 1) \][/tex]
Expanding and solving for [tex]\( y \)[/tex]:
[tex]\[ y - 1 = 1.5x - 1.5 \][/tex]
[tex]\[ y = 1.5x - 1.5 + 1 \][/tex]
[tex]\[ y = 1.5x - 0.5 \][/tex]
Therefore, the y-intercept [tex]\( b \)[/tex]:
[tex]\[ b = -0.5 \][/tex]
### Final Equation of the Line
Putting it all together, the equation of the line passing through points A and the midpoint M is:
[tex]\[ y = 1.5x - 0.5 \][/tex]
So, the final answer is:
- Midpoint [tex]\(M\)[/tex]: (3.0, 4.0)
- Slope: 1.5
- Y-intercept: -0.5
- Equation: [tex]\( y = 1.5x - 0.5 \)[/tex]
### Step 1: Identify the Coordinates of Points A, B, and C
- Point A has coordinates (1, 1)
- Point B has coordinates (2, 6)
- Point C has coordinates (4, 2)
### Step 2: Calculate the Midpoint [tex]\(M\)[/tex] of Line Segment BC
The midpoint M of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] can be calculated using the midpoint formula:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Applying this formula to points B and C:
[tex]\[ M = \left( \frac{2 + 4}{2}, \frac{6 + 2}{2} \right) \][/tex]
[tex]\[ M = (3.0, 4.0) \][/tex]
### Step 3: Determine the Slope of Line AM
The slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using point A (1, 1) and the midpoint M (3.0, 4.0):
[tex]\[ m = \frac{4.0 - 1}{3.0 - 1} \][/tex]
[tex]\[ m = \frac{3.0}{2.0} \][/tex]
[tex]\[ m = 1.5 \][/tex]
### Step 4: Use the Point-Slope Form to Calculate the Y-Intercept
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
We can use point A (1, 1) and the slope [tex]\( m = 1.5 \)[/tex]:
[tex]\[ y - 1 = 1.5(x - 1) \][/tex]
Expanding and solving for [tex]\( y \)[/tex]:
[tex]\[ y - 1 = 1.5x - 1.5 \][/tex]
[tex]\[ y = 1.5x - 1.5 + 1 \][/tex]
[tex]\[ y = 1.5x - 0.5 \][/tex]
Therefore, the y-intercept [tex]\( b \)[/tex]:
[tex]\[ b = -0.5 \][/tex]
### Final Equation of the Line
Putting it all together, the equation of the line passing through points A and the midpoint M is:
[tex]\[ y = 1.5x - 0.5 \][/tex]
So, the final answer is:
- Midpoint [tex]\(M\)[/tex]: (3.0, 4.0)
- Slope: 1.5
- Y-intercept: -0.5
- Equation: [tex]\( y = 1.5x - 0.5 \)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.