Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the center and radius of the circle given by the equation [tex]\((x - 2)^2 + y^2 = 9\)[/tex], we can compare it to the standard form of the equation of a circle, which is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex]. Here, [tex]\((h, k)\)[/tex] represents the center of the circle, and [tex]\(r\)[/tex] represents the radius.
1. Identify the center [tex]\((h, k)\)[/tex]:
The given equation is [tex]\((x - 2)^2 + y^2 = 9\)[/tex]. From the standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], we can see that:
- [tex]\(h\)[/tex] is the value that [tex]\(x\)[/tex] is subtracted from inside the parentheses. Here, [tex]\(x\)[/tex] is subtracted from 2, so [tex]\(h = 2\)[/tex].
- [tex]\(k\)[/tex] is the value that [tex]\(y\)[/tex] is subtracted from inside the parentheses. Here, [tex]\(y\)[/tex] is not subtracted from anything, so [tex]\(k = 0\)[/tex].
Therefore, the center of the circle is [tex]\((2, 0)\)[/tex].
2. Identify the radius [tex]\(r\)[/tex]:
The right-hand side of the equation is [tex]\(r^2\)[/tex]. In the given equation, this value is 9. To find the radius [tex]\(r\)[/tex], take the square root of 9:
[tex]\[ r = \sqrt{9} = 3 \][/tex]
Therefore, the radius of the circle is 3.
So, the answers are:
- The center of the circle is [tex]\((2, 0)\)[/tex].
- The radius of the circle is 3.
1. Identify the center [tex]\((h, k)\)[/tex]:
The given equation is [tex]\((x - 2)^2 + y^2 = 9\)[/tex]. From the standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], we can see that:
- [tex]\(h\)[/tex] is the value that [tex]\(x\)[/tex] is subtracted from inside the parentheses. Here, [tex]\(x\)[/tex] is subtracted from 2, so [tex]\(h = 2\)[/tex].
- [tex]\(k\)[/tex] is the value that [tex]\(y\)[/tex] is subtracted from inside the parentheses. Here, [tex]\(y\)[/tex] is not subtracted from anything, so [tex]\(k = 0\)[/tex].
Therefore, the center of the circle is [tex]\((2, 0)\)[/tex].
2. Identify the radius [tex]\(r\)[/tex]:
The right-hand side of the equation is [tex]\(r^2\)[/tex]. In the given equation, this value is 9. To find the radius [tex]\(r\)[/tex], take the square root of 9:
[tex]\[ r = \sqrt{9} = 3 \][/tex]
Therefore, the radius of the circle is 3.
So, the answers are:
- The center of the circle is [tex]\((2, 0)\)[/tex].
- The radius of the circle is 3.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.