Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's tackle these problems step-by-step with all the necessary equations and substitutions.
### Part a: Calculate the wavelength of the photon
Given:
- Energy of the photon ([tex]\( E \)[/tex]) = [tex]\( 3.26 \times 10^{-19} \)[/tex] joules
- Speed of light ([tex]\( c \)[/tex]) = [tex]\( 3 \times 10^8 \)[/tex] meters per second
- Planck's constant ([tex]\( h \)[/tex]) = [tex]\( 6.626 \times 10^{-34} \)[/tex] joule seconds
Equation:
To find the wavelength ([tex]\( \lambda \)[/tex]) of the photon, we use the energy-wavelength relationship given by the equation:
[tex]\[ E = \frac{h \cdot c}{\lambda} \][/tex]
Rearrange the equation to solve for [tex]\( \lambda \)[/tex]:
[tex]\[ \lambda = \frac{h \cdot c}{E} \][/tex]
Substitution:
Now, plug in the given values:
[tex]\[ \lambda = \frac{(6.626 \times 10^{-34} \text{ Js}) \times (3 \times 10^8 \text{ m/s})}{3.26 \times 10^{-19} \text{ J}} \][/tex]
Calculation:
[tex]\[ \lambda = \frac{1.9878 \times 10^{-25} \text{ Js m/s}}{3.26 \times 10^{-19} \text{ J}} \][/tex]
Perform the division:
[tex]\[ \lambda \approx 6.097546012269938 \times 10^{-7} \text{ meters} \][/tex]
So, the wavelength of the photon is approximately [tex]\( 6.097546012269938 \times 10^{-7} \)[/tex] meters.
### Part b: Calculate the photon's frequency
Given:
- Energy of the photon ([tex]\( E \)[/tex]) = [tex]\( 3.26 \times 10^{-19} \)[/tex] joules
- Planck's constant ([tex]\( h \)[/tex]) = [tex]\( 6.626 \times 10^{-34} \)[/tex] joule seconds
Equation:
To find the frequency ([tex]\( \nu \)[/tex]) of the photon, we use the energy-frequency relationship given by the equation:
[tex]\[ E = h \cdot \nu \][/tex]
Rearrange the equation to solve for [tex]\( \nu \)[/tex]:
[tex]\[ \nu = \frac{E}{h} \][/tex]
Substitution:
Now, plug in the given values:
[tex]\[ \nu = \frac{3.26 \times 10^{-19} \text{ J}}{6.626 \times 10^{-34} \text{ J s}} \][/tex]
Calculation:
[tex]\[ \nu \approx 492001207364926.06 \text{ Hz} \][/tex]
So, the frequency of the photon is approximately [tex]\( 4.920 \times 10^{14} \)[/tex] Hz, or more precisely, [tex]\( 492001207364926.06 \)[/tex] Hz.
This is the detailed step-by-step solution to calculate both the wavelength and the frequency of the photon given its energy.
### Part a: Calculate the wavelength of the photon
Given:
- Energy of the photon ([tex]\( E \)[/tex]) = [tex]\( 3.26 \times 10^{-19} \)[/tex] joules
- Speed of light ([tex]\( c \)[/tex]) = [tex]\( 3 \times 10^8 \)[/tex] meters per second
- Planck's constant ([tex]\( h \)[/tex]) = [tex]\( 6.626 \times 10^{-34} \)[/tex] joule seconds
Equation:
To find the wavelength ([tex]\( \lambda \)[/tex]) of the photon, we use the energy-wavelength relationship given by the equation:
[tex]\[ E = \frac{h \cdot c}{\lambda} \][/tex]
Rearrange the equation to solve for [tex]\( \lambda \)[/tex]:
[tex]\[ \lambda = \frac{h \cdot c}{E} \][/tex]
Substitution:
Now, plug in the given values:
[tex]\[ \lambda = \frac{(6.626 \times 10^{-34} \text{ Js}) \times (3 \times 10^8 \text{ m/s})}{3.26 \times 10^{-19} \text{ J}} \][/tex]
Calculation:
[tex]\[ \lambda = \frac{1.9878 \times 10^{-25} \text{ Js m/s}}{3.26 \times 10^{-19} \text{ J}} \][/tex]
Perform the division:
[tex]\[ \lambda \approx 6.097546012269938 \times 10^{-7} \text{ meters} \][/tex]
So, the wavelength of the photon is approximately [tex]\( 6.097546012269938 \times 10^{-7} \)[/tex] meters.
### Part b: Calculate the photon's frequency
Given:
- Energy of the photon ([tex]\( E \)[/tex]) = [tex]\( 3.26 \times 10^{-19} \)[/tex] joules
- Planck's constant ([tex]\( h \)[/tex]) = [tex]\( 6.626 \times 10^{-34} \)[/tex] joule seconds
Equation:
To find the frequency ([tex]\( \nu \)[/tex]) of the photon, we use the energy-frequency relationship given by the equation:
[tex]\[ E = h \cdot \nu \][/tex]
Rearrange the equation to solve for [tex]\( \nu \)[/tex]:
[tex]\[ \nu = \frac{E}{h} \][/tex]
Substitution:
Now, plug in the given values:
[tex]\[ \nu = \frac{3.26 \times 10^{-19} \text{ J}}{6.626 \times 10^{-34} \text{ J s}} \][/tex]
Calculation:
[tex]\[ \nu \approx 492001207364926.06 \text{ Hz} \][/tex]
So, the frequency of the photon is approximately [tex]\( 4.920 \times 10^{14} \)[/tex] Hz, or more precisely, [tex]\( 492001207364926.06 \)[/tex] Hz.
This is the detailed step-by-step solution to calculate both the wavelength and the frequency of the photon given its energy.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.