Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Question Progress
Homework Progress
15/37 Marks
p is an odd number.
Explain why p² + 1 is always an even number.
+


Sagot :

Sure, let's explore why [tex]\( p^2 + 1 \)[/tex] is always an even number when [tex]\( p \)[/tex] is an odd number.

### Step-by-Step Solution:

1. Understanding Odd Numbers:
- An odd number can be represented in the form [tex]\( p = 2n + 1 \)[/tex], where [tex]\( n \)[/tex] is an integer. This representation ensures that [tex]\( p \)[/tex] is always odd.

2. Expanding [tex]\( p^2 \)[/tex]:
- Let's square the odd number [tex]\( p = 2n + 1 \)[/tex].
- [tex]\( p^2 = (2n + 1)^2 \)[/tex]

3. Applying the Binomial Theorem:
- Expand [tex]\( (2n + 1)^2 \)[/tex]:
[tex]\[ (2n + 1)^2 = (2n)^2 + 2 \cdot 2n \cdot 1 + 1^2 \][/tex]
- Simplifying it:
[tex]\[ (2n + 1)^2 = 4n^2 + 4n + 1 \][/tex]

4. Adding 1 to [tex]\( p^2 \)[/tex]:
- Now, add 1 to [tex]\( p^2 \)[/tex]:
[tex]\[ p^2 + 1 = 4n^2 + 4n + 1 + 1 \][/tex]
- Simplifying it further:
[tex]\[ p^2 + 1 = 4n^2 + 4n + 2 \][/tex]

5. Factoring Out Common Terms:
- Notice that [tex]\( 4n^2 + 4n + 2 \)[/tex] can be factored to pull out a 2:
[tex]\[ 4n^2 + 4n + 2 = 2(2n^2 + 2n + 1) \][/tex]

6. Conclusion:
- The expression [tex]\( 2(2n^2 + 2n + 1) \)[/tex] shows that [tex]\( p^2 + 1 \)[/tex] is clearly a multiple of 2.
- Hence, [tex]\( p^2 + 1 \)[/tex] must be an even number because any number that can be expressed as [tex]\( 2 \times \)[/tex] some integer is even.

Therefore, [tex]\( p^2 + 1 \)[/tex] is always an even number when [tex]\( p \)[/tex] is an odd number.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.