Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's break down and solve the given inequalities step by step.
### Inequality 1: [tex]\(-x < 9 - 12\)[/tex]
1. Simplify the right-hand side:
[tex]\[ 9 - 12 = -3 \][/tex]
So the inequality becomes:
[tex]\[ -x < -3 \][/tex]
2. To isolate [tex]\(x\)[/tex], multiply both sides of the inequality by [tex]\(-1\)[/tex]. Remember that multiplying or dividing an inequality by a negative number reverses the inequality sign:
[tex]\[ x > 3 \][/tex]
### Inequality 2: [tex]\(-20 < -x - 9\)[/tex]
1. Add 9 to both sides to isolate [tex]\(-x\)[/tex]:
[tex]\[ -20 + 9 < -x \][/tex]
Simplify the left-hand side:
[tex]\[ -11 < -x \][/tex]
2. Again, multiply both sides by [tex]\(-1\)[/tex], reversing the inequality sign:
[tex]\[ 11 > x \][/tex]
This can also be written as:
[tex]\[ x < 11 \][/tex]
### Combining the Solutions
We have two inequalities:
1. [tex]\(x > 3\)[/tex]
2. [tex]\(x < 11\)[/tex]
When we combine these inequalities, we find that [tex]\(x\)[/tex] must satisfy both conditions simultaneously. This gives us the combined inequality:
[tex]\[ 3 < x < 11 \][/tex]
### Graphing the Solution
To graph the solution [tex]\(3 < x < 11\)[/tex] on a number line:
1. Draw a number line.
2. Mark the numbers 3 and 11 on the number line.
3. Place open circles at 3 and 11 to indicate that these points are not included in the solution (since the inequality is strict, [tex]\(>\)[/tex] and [tex]\(<\)[/tex] rather than [tex]\(\geq\)[/tex] and [tex]\(\leq\)[/tex]).
4. Shade the region between 3 and 11 to indicate that all numbers in this interval are solutions.
The graph on the number line should look like this:
```
2 3 4 5 6 7 8 9 10 11 12
|---(===)===================(==)---|
```
The open circles at 3 and 11 indicate that these endpoints are not part of the solution, and the shaded region shows all the values of [tex]\(x\)[/tex] that satisfy [tex]\(3 < x < 11\)[/tex].
### Inequality 1: [tex]\(-x < 9 - 12\)[/tex]
1. Simplify the right-hand side:
[tex]\[ 9 - 12 = -3 \][/tex]
So the inequality becomes:
[tex]\[ -x < -3 \][/tex]
2. To isolate [tex]\(x\)[/tex], multiply both sides of the inequality by [tex]\(-1\)[/tex]. Remember that multiplying or dividing an inequality by a negative number reverses the inequality sign:
[tex]\[ x > 3 \][/tex]
### Inequality 2: [tex]\(-20 < -x - 9\)[/tex]
1. Add 9 to both sides to isolate [tex]\(-x\)[/tex]:
[tex]\[ -20 + 9 < -x \][/tex]
Simplify the left-hand side:
[tex]\[ -11 < -x \][/tex]
2. Again, multiply both sides by [tex]\(-1\)[/tex], reversing the inequality sign:
[tex]\[ 11 > x \][/tex]
This can also be written as:
[tex]\[ x < 11 \][/tex]
### Combining the Solutions
We have two inequalities:
1. [tex]\(x > 3\)[/tex]
2. [tex]\(x < 11\)[/tex]
When we combine these inequalities, we find that [tex]\(x\)[/tex] must satisfy both conditions simultaneously. This gives us the combined inequality:
[tex]\[ 3 < x < 11 \][/tex]
### Graphing the Solution
To graph the solution [tex]\(3 < x < 11\)[/tex] on a number line:
1. Draw a number line.
2. Mark the numbers 3 and 11 on the number line.
3. Place open circles at 3 and 11 to indicate that these points are not included in the solution (since the inequality is strict, [tex]\(>\)[/tex] and [tex]\(<\)[/tex] rather than [tex]\(\geq\)[/tex] and [tex]\(\leq\)[/tex]).
4. Shade the region between 3 and 11 to indicate that all numbers in this interval are solutions.
The graph on the number line should look like this:
```
2 3 4 5 6 7 8 9 10 11 12
|---(===)===================(==)---|
```
The open circles at 3 and 11 indicate that these endpoints are not part of the solution, and the shaded region shows all the values of [tex]\(x\)[/tex] that satisfy [tex]\(3 < x < 11\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.