Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's determine the concentration of a caesium hydroxide (CSOH) solution given the specifics of the problem.
### Step-by-Step Solution:
1. Identify Given Information:
- Volume of [tex]\( \text{HI} \)[/tex] solution: 257.0 mL
- Molarity of [tex]\( \text{HI} \)[/tex] solution: 1.02 M
- Volume of [tex]\( \text{CSOH} \)[/tex] solution: 130.0 mL
2. Calculate the Moles of [tex]\( \text{HI} \)[/tex]:
The molarity (M) of a solution is defined as the number of moles (n) of solute per liter (L) of solution. The formula to find the number of moles is:
[tex]\[ \text{moles} = \text{Molarity} \times \text{Volume (in liters)} \][/tex]
Convert the volume of [tex]\( \text{HI} \)[/tex] from mL to L:
[tex]\[ 257.0 \text{ mL} = 257.0 \div 1000 = 0.257 \text{ L} \][/tex]
Now, calculate the moles of [tex]\( \text{HI} \)[/tex]:
[tex]\[ \text{moles of HI} = 1.02 \times 0.257 = 0.26214 \text{ moles} \][/tex]
3. Understand the Reaction:
The neutralization reaction between [tex]\( \text{HI} \)[/tex] and [tex]\( \text{CSOH} \)[/tex] is given by:
[tex]\[ \text{HI} + \text{CSOH} \rightarrow \text{CsI} + \text{H}_2\text{O} \][/tex]
From the equation, it's clear that 1 mole of [tex]\( \text{HI} \)[/tex] reacts with 1 mole of [tex]\( \text{CSOH} \)[/tex]. Therefore, the moles of [tex]\( \text{CSOH} \)[/tex] required will also be 0.26214 moles.
4. Calculate the Molarity of [tex]\( \text{CSOH} \)[/tex] Solution:
Using the volume of the [tex]\( \text{CSOH} \)[/tex] solution (130.0 mL), convert it from mL to L:
[tex]\[ 130.0 \text{ mL} = 130.0 \div 1000 = 0.130 \text{ L} \][/tex]
The molarity of the [tex]\( \text{CSOH} \)[/tex] solution is calculated using the formula:
[tex]\[ \text{Molarity} = \frac{\text{moles}}{\text{volume (in liters)}} \][/tex]
Thus, the molarity of [tex]\( \text{CSOH} \)[/tex]:
[tex]\[ \text{Molarity of CSOH} = \frac{0.26214}{0.130} = 2.016 \text{ M} \][/tex]
### Conclusion:
The concentration of the caesium hydroxide (CSOH) solution is 2.016 M.
### Step-by-Step Solution:
1. Identify Given Information:
- Volume of [tex]\( \text{HI} \)[/tex] solution: 257.0 mL
- Molarity of [tex]\( \text{HI} \)[/tex] solution: 1.02 M
- Volume of [tex]\( \text{CSOH} \)[/tex] solution: 130.0 mL
2. Calculate the Moles of [tex]\( \text{HI} \)[/tex]:
The molarity (M) of a solution is defined as the number of moles (n) of solute per liter (L) of solution. The formula to find the number of moles is:
[tex]\[ \text{moles} = \text{Molarity} \times \text{Volume (in liters)} \][/tex]
Convert the volume of [tex]\( \text{HI} \)[/tex] from mL to L:
[tex]\[ 257.0 \text{ mL} = 257.0 \div 1000 = 0.257 \text{ L} \][/tex]
Now, calculate the moles of [tex]\( \text{HI} \)[/tex]:
[tex]\[ \text{moles of HI} = 1.02 \times 0.257 = 0.26214 \text{ moles} \][/tex]
3. Understand the Reaction:
The neutralization reaction between [tex]\( \text{HI} \)[/tex] and [tex]\( \text{CSOH} \)[/tex] is given by:
[tex]\[ \text{HI} + \text{CSOH} \rightarrow \text{CsI} + \text{H}_2\text{O} \][/tex]
From the equation, it's clear that 1 mole of [tex]\( \text{HI} \)[/tex] reacts with 1 mole of [tex]\( \text{CSOH} \)[/tex]. Therefore, the moles of [tex]\( \text{CSOH} \)[/tex] required will also be 0.26214 moles.
4. Calculate the Molarity of [tex]\( \text{CSOH} \)[/tex] Solution:
Using the volume of the [tex]\( \text{CSOH} \)[/tex] solution (130.0 mL), convert it from mL to L:
[tex]\[ 130.0 \text{ mL} = 130.0 \div 1000 = 0.130 \text{ L} \][/tex]
The molarity of the [tex]\( \text{CSOH} \)[/tex] solution is calculated using the formula:
[tex]\[ \text{Molarity} = \frac{\text{moles}}{\text{volume (in liters)}} \][/tex]
Thus, the molarity of [tex]\( \text{CSOH} \)[/tex]:
[tex]\[ \text{Molarity of CSOH} = \frac{0.26214}{0.130} = 2.016 \text{ M} \][/tex]
### Conclusion:
The concentration of the caesium hydroxide (CSOH) solution is 2.016 M.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.