Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

The population of Frillsville is changing exponentially. This change is modeled by the
function f(x) = 50,000 (0.98), where x represents the number of years. Interpret the function to
describe how the population changes.
Explain your reasoning.

Sagot :

Certainly! Let's break down and interpret the given function step-by-step:

### Step 1: Understanding the Initial Population
The given function is [tex]\( f(x) = 50,000 \cdot (0.98)^x \)[/tex], where [tex]\( x \)[/tex] represents the number of years.

- The initial population of Frillsville is 50,000. This is the starting point, meaning when [tex]\( x = 0 \)[/tex], we have [tex]\( f(0) = 50,000 \cdot (0.98)^0 \)[/tex]. Since any number raised to the power of 0 is 1, it simplifies to [tex]\( f(0) = 50,000 \)[/tex].

### Step 2: Understanding the Change Factor
- The change factor is 0.98. This means that each year, the population is multiplied by 0.98.

### Step 3: Yearly Population Change
To understand the change, consider what multiplying by 0.98 implies:
- If we take 0.98 as a percentage, it translates to 98%. Hence, the population retains 98% of its value from the previous year.
- Conversely, this means there is a 2% decline each year.

### Step 4: Predicting the Population Over Time
For any given year [tex]\( x \)[/tex]:
- The population decreases exponentially according to the formula [tex]\( f(x) = 50,000 \cdot (0.98)^x \)[/tex].

For example:
- After 1 year ([tex]\( x=1 \)[/tex]): the population is [tex]\( f(1) = 50,000 \cdot 0.98 \approx 49,000 \)[/tex].
- After 2 years ([tex]\( x=2 \)[/tex]): the population is [tex]\( f(2) = 50,000 \cdot (0.98)^2 \approx 48,020 \)[/tex].

### Step 5: Long-Term Trends
As [tex]\( x \)[/tex] increases:
- The term [tex]\( (0.98)^x \)[/tex] gets smaller because raising a number less than 1 to increasing power reduces its value.
- This indicates a consistent annual decrease in population, validating the 2% reduction per year.

### Conclusion
- The population model [tex]\( f(x) = 50,000 \cdot (0.98)^x \)[/tex] tells us that the population of Frillsville starts at 50,000 and decreases by 2% each year.
- Over time, the population continues to decline, following this exponential decay pattern.

Step 1: Understanding the Initial Population

The given function is \( f(x) = 50,000 \cdot (0.98)^x \), where \( x \) represents the number of years.

- The initial population of Frillsville is 50,000. This is the starting point, meaning when \( x = 0 \), we have \( f(0) = 50,000 \cdot (0.98)^0 \). Since any number raised to the power of 0 is 1, it simplifies to \( f(0) = 50,000 \).

Step 2: Understanding the Change Factor

- The change factor is 0.98. This means that each year, the population is multiplied by 0.98.

Step 3: Yearly Population Change

To understand the change, consider what multiplying by 0.98 implies:

- If we take 0.98 as a percentage, it translates to 98%. Hence, the population retains 98% of its value from the previous year.

- Conversely, this means there is a 2% decline each year.

Step 4: Predicting the Population Over Time

For any given year \( x \):

- The population decreases exponentially according to the formula \( f(x) = 50,000 \cdot (0.98)^x \).

For example:

- After 1 year (\( x=1 \)): the population is \( f(1) = 50,000 \cdot 0.98 \approx 49,000 \).

- After 2 years (\( x=2 \)): the population is \( f(2) = 50,000 \cdot (0.98)^2 \approx 48,020 \).

Step 5: Long-Term Trends

As \( x \) increases:

- The term \( (0.98)^x \) gets smaller because raising a number less than 1 to increasing power reduces its value.

- This indicates a consistent annual decrease in population, validating the 2% reduction per year.

Answer:

- The population model \( f(x) = 50,000 \cdot (0.98)^x \) tells us that the population of Frillsville starts at 50,000 and decreases by 2% each year.

- Over time, the population continues to decline, following this exponential decay pattern.

We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.