Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to calculate the wavelength of the photon emitted when an electron transitions between two energy levels in an atom. Follow these steps carefully:
1. Determine the Initial and Final Energy Levels:
- The initial energy level [tex]\( E_i \)[/tex] is -3.4 eV.
- The final energy level [tex]\( E_f \)[/tex] is -13.6 eV.
2. Calculate the Energy Difference:
- The energy difference [tex]\( \Delta E \)[/tex] between the two levels is:
[tex]\[ \Delta E = E_f - E_i = -13.6 \, \text{eV} - (-3.4 \, \text{eV}) = -13.6 \, \text{eV} + 3.4 \, \text{eV} = -10.2 \, \text{eV} \][/tex]
3. Convert the Energy Difference to Joules:
- The conversion factor from electron volts (eV) to joules (J) is [tex]\( 1 \, \text{eV} = 1.60219 \times 10^{-19} \, \text{J} \)[/tex].
- Thus, the energy difference in joules [tex]\( \Delta E_\text{joules} \)[/tex] is:
[tex]\[ \Delta E_\text{joules} = \Delta E \times 1.60219 \times 10^{-19} \, \text{J/eV} = -10.2 \, \text{eV} \times 1.60219 \times 10^{-19} \, \text{J/eV} = -1.6342338 \times 10^{-18} \, \text{J} \][/tex]
4. Use Planck's Equation to Find the Wavelength:
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
where,
- [tex]\( h \)[/tex] is Planck's constant [tex]\( 6.62607015 \times 10^{-34} \, \text{J·s} \)[/tex]
- [tex]\( c \)[/tex] is the speed of light [tex]\( 3.00 \times 10^{8} \, \text{m/s} \)[/tex]
- [tex]\( \lambda \)[/tex] is the wavelength (m)
Rearrange for [tex]\( \lambda \)[/tex]:
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
Substitute the values:
[tex]\[ \lambda = \frac{6.62607015 \times 10^{-34} \, \text{J·s} \times 3.00 \times 10^{8} \, \text{m/s}}{-1.6342338 \times 10^{-18} \, \text{J}} \][/tex]
5. Calculate the Wavelength:
[tex]\[ \lambda = -1.2163627 \times 10^{-7} \, \text{m} \][/tex]
The negative sign indicates emission.
6. Round the Wavelength to 3 Significant Digits:
- The wavelength rounded to 3 significant digits is:
[tex]\[ \lambda \approx -0.0 \, \text{m} \][/tex]
Thus, the wavelength of the photon emitted in this process, rounded to 3 significant digits, is [tex]\( -0.0 \)[/tex] meters.
1. Determine the Initial and Final Energy Levels:
- The initial energy level [tex]\( E_i \)[/tex] is -3.4 eV.
- The final energy level [tex]\( E_f \)[/tex] is -13.6 eV.
2. Calculate the Energy Difference:
- The energy difference [tex]\( \Delta E \)[/tex] between the two levels is:
[tex]\[ \Delta E = E_f - E_i = -13.6 \, \text{eV} - (-3.4 \, \text{eV}) = -13.6 \, \text{eV} + 3.4 \, \text{eV} = -10.2 \, \text{eV} \][/tex]
3. Convert the Energy Difference to Joules:
- The conversion factor from electron volts (eV) to joules (J) is [tex]\( 1 \, \text{eV} = 1.60219 \times 10^{-19} \, \text{J} \)[/tex].
- Thus, the energy difference in joules [tex]\( \Delta E_\text{joules} \)[/tex] is:
[tex]\[ \Delta E_\text{joules} = \Delta E \times 1.60219 \times 10^{-19} \, \text{J/eV} = -10.2 \, \text{eV} \times 1.60219 \times 10^{-19} \, \text{J/eV} = -1.6342338 \times 10^{-18} \, \text{J} \][/tex]
4. Use Planck's Equation to Find the Wavelength:
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
where,
- [tex]\( h \)[/tex] is Planck's constant [tex]\( 6.62607015 \times 10^{-34} \, \text{J·s} \)[/tex]
- [tex]\( c \)[/tex] is the speed of light [tex]\( 3.00 \times 10^{8} \, \text{m/s} \)[/tex]
- [tex]\( \lambda \)[/tex] is the wavelength (m)
Rearrange for [tex]\( \lambda \)[/tex]:
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
Substitute the values:
[tex]\[ \lambda = \frac{6.62607015 \times 10^{-34} \, \text{J·s} \times 3.00 \times 10^{8} \, \text{m/s}}{-1.6342338 \times 10^{-18} \, \text{J}} \][/tex]
5. Calculate the Wavelength:
[tex]\[ \lambda = -1.2163627 \times 10^{-7} \, \text{m} \][/tex]
The negative sign indicates emission.
6. Round the Wavelength to 3 Significant Digits:
- The wavelength rounded to 3 significant digits is:
[tex]\[ \lambda \approx -0.0 \, \text{m} \][/tex]
Thus, the wavelength of the photon emitted in this process, rounded to 3 significant digits, is [tex]\( -0.0 \)[/tex] meters.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.