Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, we need to calculate the wavelength of the photon emitted when an electron transitions between two energy levels in an atom. Follow these steps carefully:
1. Determine the Initial and Final Energy Levels:
- The initial energy level [tex]\( E_i \)[/tex] is -3.4 eV.
- The final energy level [tex]\( E_f \)[/tex] is -13.6 eV.
2. Calculate the Energy Difference:
- The energy difference [tex]\( \Delta E \)[/tex] between the two levels is:
[tex]\[ \Delta E = E_f - E_i = -13.6 \, \text{eV} - (-3.4 \, \text{eV}) = -13.6 \, \text{eV} + 3.4 \, \text{eV} = -10.2 \, \text{eV} \][/tex]
3. Convert the Energy Difference to Joules:
- The conversion factor from electron volts (eV) to joules (J) is [tex]\( 1 \, \text{eV} = 1.60219 \times 10^{-19} \, \text{J} \)[/tex].
- Thus, the energy difference in joules [tex]\( \Delta E_\text{joules} \)[/tex] is:
[tex]\[ \Delta E_\text{joules} = \Delta E \times 1.60219 \times 10^{-19} \, \text{J/eV} = -10.2 \, \text{eV} \times 1.60219 \times 10^{-19} \, \text{J/eV} = -1.6342338 \times 10^{-18} \, \text{J} \][/tex]
4. Use Planck's Equation to Find the Wavelength:
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
where,
- [tex]\( h \)[/tex] is Planck's constant [tex]\( 6.62607015 \times 10^{-34} \, \text{J·s} \)[/tex]
- [tex]\( c \)[/tex] is the speed of light [tex]\( 3.00 \times 10^{8} \, \text{m/s} \)[/tex]
- [tex]\( \lambda \)[/tex] is the wavelength (m)
Rearrange for [tex]\( \lambda \)[/tex]:
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
Substitute the values:
[tex]\[ \lambda = \frac{6.62607015 \times 10^{-34} \, \text{J·s} \times 3.00 \times 10^{8} \, \text{m/s}}{-1.6342338 \times 10^{-18} \, \text{J}} \][/tex]
5. Calculate the Wavelength:
[tex]\[ \lambda = -1.2163627 \times 10^{-7} \, \text{m} \][/tex]
The negative sign indicates emission.
6. Round the Wavelength to 3 Significant Digits:
- The wavelength rounded to 3 significant digits is:
[tex]\[ \lambda \approx -0.0 \, \text{m} \][/tex]
Thus, the wavelength of the photon emitted in this process, rounded to 3 significant digits, is [tex]\( -0.0 \)[/tex] meters.
1. Determine the Initial and Final Energy Levels:
- The initial energy level [tex]\( E_i \)[/tex] is -3.4 eV.
- The final energy level [tex]\( E_f \)[/tex] is -13.6 eV.
2. Calculate the Energy Difference:
- The energy difference [tex]\( \Delta E \)[/tex] between the two levels is:
[tex]\[ \Delta E = E_f - E_i = -13.6 \, \text{eV} - (-3.4 \, \text{eV}) = -13.6 \, \text{eV} + 3.4 \, \text{eV} = -10.2 \, \text{eV} \][/tex]
3. Convert the Energy Difference to Joules:
- The conversion factor from electron volts (eV) to joules (J) is [tex]\( 1 \, \text{eV} = 1.60219 \times 10^{-19} \, \text{J} \)[/tex].
- Thus, the energy difference in joules [tex]\( \Delta E_\text{joules} \)[/tex] is:
[tex]\[ \Delta E_\text{joules} = \Delta E \times 1.60219 \times 10^{-19} \, \text{J/eV} = -10.2 \, \text{eV} \times 1.60219 \times 10^{-19} \, \text{J/eV} = -1.6342338 \times 10^{-18} \, \text{J} \][/tex]
4. Use Planck's Equation to Find the Wavelength:
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
where,
- [tex]\( h \)[/tex] is Planck's constant [tex]\( 6.62607015 \times 10^{-34} \, \text{J·s} \)[/tex]
- [tex]\( c \)[/tex] is the speed of light [tex]\( 3.00 \times 10^{8} \, \text{m/s} \)[/tex]
- [tex]\( \lambda \)[/tex] is the wavelength (m)
Rearrange for [tex]\( \lambda \)[/tex]:
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
Substitute the values:
[tex]\[ \lambda = \frac{6.62607015 \times 10^{-34} \, \text{J·s} \times 3.00 \times 10^{8} \, \text{m/s}}{-1.6342338 \times 10^{-18} \, \text{J}} \][/tex]
5. Calculate the Wavelength:
[tex]\[ \lambda = -1.2163627 \times 10^{-7} \, \text{m} \][/tex]
The negative sign indicates emission.
6. Round the Wavelength to 3 Significant Digits:
- The wavelength rounded to 3 significant digits is:
[tex]\[ \lambda \approx -0.0 \, \text{m} \][/tex]
Thus, the wavelength of the photon emitted in this process, rounded to 3 significant digits, is [tex]\( -0.0 \)[/tex] meters.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.