Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, we need to calculate the wavelength of the photon emitted when an electron transitions between two energy levels in an atom. Follow these steps carefully:
1. Determine the Initial and Final Energy Levels:
- The initial energy level [tex]\( E_i \)[/tex] is -3.4 eV.
- The final energy level [tex]\( E_f \)[/tex] is -13.6 eV.
2. Calculate the Energy Difference:
- The energy difference [tex]\( \Delta E \)[/tex] between the two levels is:
[tex]\[ \Delta E = E_f - E_i = -13.6 \, \text{eV} - (-3.4 \, \text{eV}) = -13.6 \, \text{eV} + 3.4 \, \text{eV} = -10.2 \, \text{eV} \][/tex]
3. Convert the Energy Difference to Joules:
- The conversion factor from electron volts (eV) to joules (J) is [tex]\( 1 \, \text{eV} = 1.60219 \times 10^{-19} \, \text{J} \)[/tex].
- Thus, the energy difference in joules [tex]\( \Delta E_\text{joules} \)[/tex] is:
[tex]\[ \Delta E_\text{joules} = \Delta E \times 1.60219 \times 10^{-19} \, \text{J/eV} = -10.2 \, \text{eV} \times 1.60219 \times 10^{-19} \, \text{J/eV} = -1.6342338 \times 10^{-18} \, \text{J} \][/tex]
4. Use Planck's Equation to Find the Wavelength:
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
where,
- [tex]\( h \)[/tex] is Planck's constant [tex]\( 6.62607015 \times 10^{-34} \, \text{J·s} \)[/tex]
- [tex]\( c \)[/tex] is the speed of light [tex]\( 3.00 \times 10^{8} \, \text{m/s} \)[/tex]
- [tex]\( \lambda \)[/tex] is the wavelength (m)
Rearrange for [tex]\( \lambda \)[/tex]:
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
Substitute the values:
[tex]\[ \lambda = \frac{6.62607015 \times 10^{-34} \, \text{J·s} \times 3.00 \times 10^{8} \, \text{m/s}}{-1.6342338 \times 10^{-18} \, \text{J}} \][/tex]
5. Calculate the Wavelength:
[tex]\[ \lambda = -1.2163627 \times 10^{-7} \, \text{m} \][/tex]
The negative sign indicates emission.
6. Round the Wavelength to 3 Significant Digits:
- The wavelength rounded to 3 significant digits is:
[tex]\[ \lambda \approx -0.0 \, \text{m} \][/tex]
Thus, the wavelength of the photon emitted in this process, rounded to 3 significant digits, is [tex]\( -0.0 \)[/tex] meters.
1. Determine the Initial and Final Energy Levels:
- The initial energy level [tex]\( E_i \)[/tex] is -3.4 eV.
- The final energy level [tex]\( E_f \)[/tex] is -13.6 eV.
2. Calculate the Energy Difference:
- The energy difference [tex]\( \Delta E \)[/tex] between the two levels is:
[tex]\[ \Delta E = E_f - E_i = -13.6 \, \text{eV} - (-3.4 \, \text{eV}) = -13.6 \, \text{eV} + 3.4 \, \text{eV} = -10.2 \, \text{eV} \][/tex]
3. Convert the Energy Difference to Joules:
- The conversion factor from electron volts (eV) to joules (J) is [tex]\( 1 \, \text{eV} = 1.60219 \times 10^{-19} \, \text{J} \)[/tex].
- Thus, the energy difference in joules [tex]\( \Delta E_\text{joules} \)[/tex] is:
[tex]\[ \Delta E_\text{joules} = \Delta E \times 1.60219 \times 10^{-19} \, \text{J/eV} = -10.2 \, \text{eV} \times 1.60219 \times 10^{-19} \, \text{J/eV} = -1.6342338 \times 10^{-18} \, \text{J} \][/tex]
4. Use Planck's Equation to Find the Wavelength:
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
where,
- [tex]\( h \)[/tex] is Planck's constant [tex]\( 6.62607015 \times 10^{-34} \, \text{J·s} \)[/tex]
- [tex]\( c \)[/tex] is the speed of light [tex]\( 3.00 \times 10^{8} \, \text{m/s} \)[/tex]
- [tex]\( \lambda \)[/tex] is the wavelength (m)
Rearrange for [tex]\( \lambda \)[/tex]:
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
Substitute the values:
[tex]\[ \lambda = \frac{6.62607015 \times 10^{-34} \, \text{J·s} \times 3.00 \times 10^{8} \, \text{m/s}}{-1.6342338 \times 10^{-18} \, \text{J}} \][/tex]
5. Calculate the Wavelength:
[tex]\[ \lambda = -1.2163627 \times 10^{-7} \, \text{m} \][/tex]
The negative sign indicates emission.
6. Round the Wavelength to 3 Significant Digits:
- The wavelength rounded to 3 significant digits is:
[tex]\[ \lambda \approx -0.0 \, \text{m} \][/tex]
Thus, the wavelength of the photon emitted in this process, rounded to 3 significant digits, is [tex]\( -0.0 \)[/tex] meters.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.