Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's break down the steps to solve the problem step-by-step.
1. Identify the given data:
- Mass of the speedboat, [tex]\( m = 1.00 \times 10^3 \)[/tex] kg.
- Final velocity, [tex]\( v_f = 20.0 \)[/tex] m/s.
- Time taken, [tex]\( t = 5.00 \)[/tex] s.
- Constant drag force, [tex]\( F_d = 5.00 \times 10^2 \)[/tex] N.
2. Calculate the acceleration:
Since the speedboat goes from rest to 20.0 m/s in 5.00 seconds, we can use the following formula for constant acceleration:
[tex]\[ a = \frac{v_f - v_i}{t} \][/tex]
Here, the initial velocity [tex]\( v_i = 0 \)[/tex] (the boat starts from rest).
[tex]\[ a = \frac{20.0 \text{ m/s}}{5.00 \text{ s}} = 4.0 \text{ m/s}^2 \][/tex]
3. Calculate the net force needed to achieve this acceleration:
Using Newton's second law, [tex]\( F = ma \)[/tex]:
[tex]\[ F_{\text{net}} = m \cdot a = (1.00 \times 10^3 \text{ kg}) \times (4.0 \text{ m/s}^2) = 4000 \text{ N} \][/tex]
4. Calculate the total force needed to overcome both the drag and achieve the acceleration:
The total force [tex]\( F_{\text{total}} \)[/tex] needed is the sum of the net force [tex]\( F_{\text{net}} \)[/tex] and the drag force [tex]\( F_d \)[/tex]:
[tex]\[ F_{\text{total}} = F_{\text{net}} + F_d = 4000 \text{ N} + 500 \text{ N} = 4500 \text{ N} \][/tex]
5. Calculate the power needed:
Power [tex]\( P \)[/tex] is given by the formula:
[tex]\[ P = F_{\text{total}} \cdot v_f \][/tex]
[tex]\[ P = 4500 \text{ N} \times 20.0 \text{ m/s} = 90000 \text{ W} = 90.0 \text{ kW} \][/tex]
So, the power that the speedboat needs to go from rest to 20.0 m/s in 5.00 seconds, overcoming a constant drag force, is [tex]\(\boxed{90.0 \text{ kW}}\)[/tex].
1. Identify the given data:
- Mass of the speedboat, [tex]\( m = 1.00 \times 10^3 \)[/tex] kg.
- Final velocity, [tex]\( v_f = 20.0 \)[/tex] m/s.
- Time taken, [tex]\( t = 5.00 \)[/tex] s.
- Constant drag force, [tex]\( F_d = 5.00 \times 10^2 \)[/tex] N.
2. Calculate the acceleration:
Since the speedboat goes from rest to 20.0 m/s in 5.00 seconds, we can use the following formula for constant acceleration:
[tex]\[ a = \frac{v_f - v_i}{t} \][/tex]
Here, the initial velocity [tex]\( v_i = 0 \)[/tex] (the boat starts from rest).
[tex]\[ a = \frac{20.0 \text{ m/s}}{5.00 \text{ s}} = 4.0 \text{ m/s}^2 \][/tex]
3. Calculate the net force needed to achieve this acceleration:
Using Newton's second law, [tex]\( F = ma \)[/tex]:
[tex]\[ F_{\text{net}} = m \cdot a = (1.00 \times 10^3 \text{ kg}) \times (4.0 \text{ m/s}^2) = 4000 \text{ N} \][/tex]
4. Calculate the total force needed to overcome both the drag and achieve the acceleration:
The total force [tex]\( F_{\text{total}} \)[/tex] needed is the sum of the net force [tex]\( F_{\text{net}} \)[/tex] and the drag force [tex]\( F_d \)[/tex]:
[tex]\[ F_{\text{total}} = F_{\text{net}} + F_d = 4000 \text{ N} + 500 \text{ N} = 4500 \text{ N} \][/tex]
5. Calculate the power needed:
Power [tex]\( P \)[/tex] is given by the formula:
[tex]\[ P = F_{\text{total}} \cdot v_f \][/tex]
[tex]\[ P = 4500 \text{ N} \times 20.0 \text{ m/s} = 90000 \text{ W} = 90.0 \text{ kW} \][/tex]
So, the power that the speedboat needs to go from rest to 20.0 m/s in 5.00 seconds, overcoming a constant drag force, is [tex]\(\boxed{90.0 \text{ kW}}\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.