Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's work through the steps to find the equation of the circle given the endpoints of its diameter, which are (18, 10) and (-2, 10).
1. Find the Midpoint of the Diameter (Center of the Circle):
The midpoint of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] can be found using the midpoint formula:
[tex]\[ \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \][/tex]
Plugging in our points (18, 10) and (-2, 10):
[tex]\[ \left(\frac{18 + (-2)}{2}, \frac{10 + 10}{2}\right) = \left(\frac{16}{2}, \frac{20}{2}\right) = (8, 10) \][/tex]
So, the center of the circle is [tex]\((8, 10)\)[/tex].
2. Find the Radius of the Circle:
The radius is half the length of the diameter. To find the length of the diameter, we can use the distance formula for the points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ \text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Using our points (18, 10) and (-2, 10):
[tex]\[ \text{diameter} = \sqrt{((-2) - 18)^2 + (10 - 10)^2} = \sqrt{(-20)^2 + 0^2} = \sqrt{400} = 20 \][/tex]
The radius [tex]\(r\)[/tex] is half of the diameter:
[tex]\[ r = \frac{20}{2} = 10 \][/tex]
3. Write the Equation of the Circle:
The standard form of the equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\(r\)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Substituting [tex]\(h = 8\)[/tex], [tex]\(k = 10\)[/tex], and [tex]\(r = 10\)[/tex], we get:
[tex]\[ (x - 8)^2 + (y - 10)^2 = 10^2 \][/tex]
Simplifying the right-hand side:
[tex]\[ (x - 8)^2 + (y - 10)^2 = 100 \][/tex]
Therefore, the equation of the circle is:
[tex]\[ (x - 8)^2 + (y - 10)^2 = 100 \][/tex]
1. Find the Midpoint of the Diameter (Center of the Circle):
The midpoint of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] can be found using the midpoint formula:
[tex]\[ \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \][/tex]
Plugging in our points (18, 10) and (-2, 10):
[tex]\[ \left(\frac{18 + (-2)}{2}, \frac{10 + 10}{2}\right) = \left(\frac{16}{2}, \frac{20}{2}\right) = (8, 10) \][/tex]
So, the center of the circle is [tex]\((8, 10)\)[/tex].
2. Find the Radius of the Circle:
The radius is half the length of the diameter. To find the length of the diameter, we can use the distance formula for the points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ \text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Using our points (18, 10) and (-2, 10):
[tex]\[ \text{diameter} = \sqrt{((-2) - 18)^2 + (10 - 10)^2} = \sqrt{(-20)^2 + 0^2} = \sqrt{400} = 20 \][/tex]
The radius [tex]\(r\)[/tex] is half of the diameter:
[tex]\[ r = \frac{20}{2} = 10 \][/tex]
3. Write the Equation of the Circle:
The standard form of the equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\(r\)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Substituting [tex]\(h = 8\)[/tex], [tex]\(k = 10\)[/tex], and [tex]\(r = 10\)[/tex], we get:
[tex]\[ (x - 8)^2 + (y - 10)^2 = 10^2 \][/tex]
Simplifying the right-hand side:
[tex]\[ (x - 8)^2 + (y - 10)^2 = 100 \][/tex]
Therefore, the equation of the circle is:
[tex]\[ (x - 8)^2 + (y - 10)^2 = 100 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.