Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To understand how the value of the expression [tex]\( m(x+6) \)[/tex] changes when the value of [tex]\( x \)[/tex] decreases by 4, let's analyze the situation step-by-step.
1. Original Expression:
[tex]\[ m(x + 6) \][/tex]
2. Decrease in x:
Let's denote the original value of [tex]\( x \)[/tex] by [tex]\( x \)[/tex]. If [tex]\( x \)[/tex] decreases by 4, the new value of [tex]\( x \)[/tex] becomes:
[tex]\[ x - 4 \][/tex]
3. New Expression:
Substitute [tex]\( x - 4 \)[/tex] into the original expression:
[tex]\[ m((x - 4) + 6) \][/tex]
4. Simplify the New Expression:
Simplify the expression inside the parentheses:
[tex]\[ m(x - 4 + 6) = m(x + 2) \][/tex]
5. Determine the Change in the Expression:
The original expression was [tex]\( m(x + 6) \)[/tex]. The new expression is [tex]\( m(x + 2) \)[/tex]. To find the change, we subtract the new expression from the original expression:
[tex]\[ m(x + 6) - m(x + 2) \][/tex]
Factor out the common factor [tex]\( m \)[/tex]:
[tex]\[ m[(x + 6) - (x + 2)] = m(x + 6 - x - 2) \][/tex]
[tex]\[ = m[6 - 2] \][/tex]
[tex]\[ = m \cdot 4 \][/tex]
6. Change in the Expression:
Therefore, the change in the expression is [tex]\( -4m \)[/tex], which means the value of [tex]\( m(x+6) \)[/tex] decreases by [tex]\( 4m \)[/tex] when [tex]\( x \)[/tex] decreases by 4.
Option B: It decreases by [tex]\( 4m \)[/tex].
So, the correct answer is: B
1. Original Expression:
[tex]\[ m(x + 6) \][/tex]
2. Decrease in x:
Let's denote the original value of [tex]\( x \)[/tex] by [tex]\( x \)[/tex]. If [tex]\( x \)[/tex] decreases by 4, the new value of [tex]\( x \)[/tex] becomes:
[tex]\[ x - 4 \][/tex]
3. New Expression:
Substitute [tex]\( x - 4 \)[/tex] into the original expression:
[tex]\[ m((x - 4) + 6) \][/tex]
4. Simplify the New Expression:
Simplify the expression inside the parentheses:
[tex]\[ m(x - 4 + 6) = m(x + 2) \][/tex]
5. Determine the Change in the Expression:
The original expression was [tex]\( m(x + 6) \)[/tex]. The new expression is [tex]\( m(x + 2) \)[/tex]. To find the change, we subtract the new expression from the original expression:
[tex]\[ m(x + 6) - m(x + 2) \][/tex]
Factor out the common factor [tex]\( m \)[/tex]:
[tex]\[ m[(x + 6) - (x + 2)] = m(x + 6 - x - 2) \][/tex]
[tex]\[ = m[6 - 2] \][/tex]
[tex]\[ = m \cdot 4 \][/tex]
6. Change in the Expression:
Therefore, the change in the expression is [tex]\( -4m \)[/tex], which means the value of [tex]\( m(x+6) \)[/tex] decreases by [tex]\( 4m \)[/tex] when [tex]\( x \)[/tex] decreases by 4.
Option B: It decreases by [tex]\( 4m \)[/tex].
So, the correct answer is: B
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.