Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To understand how the value of the expression [tex]\( m(x+6) \)[/tex] changes when the value of [tex]\( x \)[/tex] decreases by 4, let's analyze the situation step-by-step.
1. Original Expression:
[tex]\[ m(x + 6) \][/tex]
2. Decrease in x:
Let's denote the original value of [tex]\( x \)[/tex] by [tex]\( x \)[/tex]. If [tex]\( x \)[/tex] decreases by 4, the new value of [tex]\( x \)[/tex] becomes:
[tex]\[ x - 4 \][/tex]
3. New Expression:
Substitute [tex]\( x - 4 \)[/tex] into the original expression:
[tex]\[ m((x - 4) + 6) \][/tex]
4. Simplify the New Expression:
Simplify the expression inside the parentheses:
[tex]\[ m(x - 4 + 6) = m(x + 2) \][/tex]
5. Determine the Change in the Expression:
The original expression was [tex]\( m(x + 6) \)[/tex]. The new expression is [tex]\( m(x + 2) \)[/tex]. To find the change, we subtract the new expression from the original expression:
[tex]\[ m(x + 6) - m(x + 2) \][/tex]
Factor out the common factor [tex]\( m \)[/tex]:
[tex]\[ m[(x + 6) - (x + 2)] = m(x + 6 - x - 2) \][/tex]
[tex]\[ = m[6 - 2] \][/tex]
[tex]\[ = m \cdot 4 \][/tex]
6. Change in the Expression:
Therefore, the change in the expression is [tex]\( -4m \)[/tex], which means the value of [tex]\( m(x+6) \)[/tex] decreases by [tex]\( 4m \)[/tex] when [tex]\( x \)[/tex] decreases by 4.
Option B: It decreases by [tex]\( 4m \)[/tex].
So, the correct answer is: B
1. Original Expression:
[tex]\[ m(x + 6) \][/tex]
2. Decrease in x:
Let's denote the original value of [tex]\( x \)[/tex] by [tex]\( x \)[/tex]. If [tex]\( x \)[/tex] decreases by 4, the new value of [tex]\( x \)[/tex] becomes:
[tex]\[ x - 4 \][/tex]
3. New Expression:
Substitute [tex]\( x - 4 \)[/tex] into the original expression:
[tex]\[ m((x - 4) + 6) \][/tex]
4. Simplify the New Expression:
Simplify the expression inside the parentheses:
[tex]\[ m(x - 4 + 6) = m(x + 2) \][/tex]
5. Determine the Change in the Expression:
The original expression was [tex]\( m(x + 6) \)[/tex]. The new expression is [tex]\( m(x + 2) \)[/tex]. To find the change, we subtract the new expression from the original expression:
[tex]\[ m(x + 6) - m(x + 2) \][/tex]
Factor out the common factor [tex]\( m \)[/tex]:
[tex]\[ m[(x + 6) - (x + 2)] = m(x + 6 - x - 2) \][/tex]
[tex]\[ = m[6 - 2] \][/tex]
[tex]\[ = m \cdot 4 \][/tex]
6. Change in the Expression:
Therefore, the change in the expression is [tex]\( -4m \)[/tex], which means the value of [tex]\( m(x+6) \)[/tex] decreases by [tex]\( 4m \)[/tex] when [tex]\( x \)[/tex] decreases by 4.
Option B: It decreases by [tex]\( 4m \)[/tex].
So, the correct answer is: B
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.