Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the electric force between two charged spheres, we'll use Coulomb's Law. Coulomb's Law provides a way to calculate the electric force between two point charges. The formula is given by:
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the electric force between the charges,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the two charges,
- [tex]\( r \)[/tex] is the separation distance between the centers of the two charges.
Given:
- [tex]\( q_1 = -3.0 \times 10^7 \, \text{C} \)[/tex]
- [tex]\( q_2 = -3.0 \times 10^7 \, \text{C} \)[/tex]
- [tex]\( r = 2 \, \text{mm} = 2 \times 10^{-3} \, \text{m} \)[/tex]
Since the charges are the same, we can simplify the absolute value term to just the magnitude:
[tex]\[ |q_1 \cdot q_2| = |-3.0 \times 10^7 \, \text{C} \times -3.0 \times 10^7 \, \text{C}| = 9.0 \times 10^{14} \, \text{C}^2 \][/tex]
Next, we substitute these values into Coulomb's Law equation:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times \frac{9.0 \times 10^{14} \, \text{C}^2}{(2 \times 10^{-3} \, \text{m})^2} \][/tex]
Now, calculating the denominator which is [tex]\( r^2 \)[/tex]:
[tex]\[ (2 \times 10^{-3} \, \text{m})^2 = 4 \times 10^{-6} \, \text{m}^2 \][/tex]
So, our equation becomes:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times \frac{9.0 \times 10^{14} \, \text{C}^2}{4 \times 10^{-6} \, \text{m}^2} \][/tex]
Simplifying the fraction:
[tex]\[ \frac{9.0 \times 10^{14} \, \text{C}^2}{4 \times 10^{-6} \, \text{m}^2} = 2.25 \times 10^{20} \, \text{C}^2 / \text{m}^2 \][/tex]
Then, multiply this by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times 2.25 \times 10^{20} \, \text{C}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 2.02275 \times 10^{30} \, \text{N} \][/tex]
Thus, the electric force between the two charged spheres is [tex]\( 2.02275 \times 10^{30} \, \text{N} \)[/tex].
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the electric force between the charges,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the two charges,
- [tex]\( r \)[/tex] is the separation distance between the centers of the two charges.
Given:
- [tex]\( q_1 = -3.0 \times 10^7 \, \text{C} \)[/tex]
- [tex]\( q_2 = -3.0 \times 10^7 \, \text{C} \)[/tex]
- [tex]\( r = 2 \, \text{mm} = 2 \times 10^{-3} \, \text{m} \)[/tex]
Since the charges are the same, we can simplify the absolute value term to just the magnitude:
[tex]\[ |q_1 \cdot q_2| = |-3.0 \times 10^7 \, \text{C} \times -3.0 \times 10^7 \, \text{C}| = 9.0 \times 10^{14} \, \text{C}^2 \][/tex]
Next, we substitute these values into Coulomb's Law equation:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times \frac{9.0 \times 10^{14} \, \text{C}^2}{(2 \times 10^{-3} \, \text{m})^2} \][/tex]
Now, calculating the denominator which is [tex]\( r^2 \)[/tex]:
[tex]\[ (2 \times 10^{-3} \, \text{m})^2 = 4 \times 10^{-6} \, \text{m}^2 \][/tex]
So, our equation becomes:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times \frac{9.0 \times 10^{14} \, \text{C}^2}{4 \times 10^{-6} \, \text{m}^2} \][/tex]
Simplifying the fraction:
[tex]\[ \frac{9.0 \times 10^{14} \, \text{C}^2}{4 \times 10^{-6} \, \text{m}^2} = 2.25 \times 10^{20} \, \text{C}^2 / \text{m}^2 \][/tex]
Then, multiply this by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times 2.25 \times 10^{20} \, \text{C}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 2.02275 \times 10^{30} \, \text{N} \][/tex]
Thus, the electric force between the two charged spheres is [tex]\( 2.02275 \times 10^{30} \, \text{N} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.