Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the electric force between two charged spheres, we'll use Coulomb's Law. Coulomb's Law provides a way to calculate the electric force between two point charges. The formula is given by:
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the electric force between the charges,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the two charges,
- [tex]\( r \)[/tex] is the separation distance between the centers of the two charges.
Given:
- [tex]\( q_1 = -3.0 \times 10^7 \, \text{C} \)[/tex]
- [tex]\( q_2 = -3.0 \times 10^7 \, \text{C} \)[/tex]
- [tex]\( r = 2 \, \text{mm} = 2 \times 10^{-3} \, \text{m} \)[/tex]
Since the charges are the same, we can simplify the absolute value term to just the magnitude:
[tex]\[ |q_1 \cdot q_2| = |-3.0 \times 10^7 \, \text{C} \times -3.0 \times 10^7 \, \text{C}| = 9.0 \times 10^{14} \, \text{C}^2 \][/tex]
Next, we substitute these values into Coulomb's Law equation:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times \frac{9.0 \times 10^{14} \, \text{C}^2}{(2 \times 10^{-3} \, \text{m})^2} \][/tex]
Now, calculating the denominator which is [tex]\( r^2 \)[/tex]:
[tex]\[ (2 \times 10^{-3} \, \text{m})^2 = 4 \times 10^{-6} \, \text{m}^2 \][/tex]
So, our equation becomes:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times \frac{9.0 \times 10^{14} \, \text{C}^2}{4 \times 10^{-6} \, \text{m}^2} \][/tex]
Simplifying the fraction:
[tex]\[ \frac{9.0 \times 10^{14} \, \text{C}^2}{4 \times 10^{-6} \, \text{m}^2} = 2.25 \times 10^{20} \, \text{C}^2 / \text{m}^2 \][/tex]
Then, multiply this by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times 2.25 \times 10^{20} \, \text{C}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 2.02275 \times 10^{30} \, \text{N} \][/tex]
Thus, the electric force between the two charged spheres is [tex]\( 2.02275 \times 10^{30} \, \text{N} \)[/tex].
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the electric force between the charges,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the two charges,
- [tex]\( r \)[/tex] is the separation distance between the centers of the two charges.
Given:
- [tex]\( q_1 = -3.0 \times 10^7 \, \text{C} \)[/tex]
- [tex]\( q_2 = -3.0 \times 10^7 \, \text{C} \)[/tex]
- [tex]\( r = 2 \, \text{mm} = 2 \times 10^{-3} \, \text{m} \)[/tex]
Since the charges are the same, we can simplify the absolute value term to just the magnitude:
[tex]\[ |q_1 \cdot q_2| = |-3.0 \times 10^7 \, \text{C} \times -3.0 \times 10^7 \, \text{C}| = 9.0 \times 10^{14} \, \text{C}^2 \][/tex]
Next, we substitute these values into Coulomb's Law equation:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times \frac{9.0 \times 10^{14} \, \text{C}^2}{(2 \times 10^{-3} \, \text{m})^2} \][/tex]
Now, calculating the denominator which is [tex]\( r^2 \)[/tex]:
[tex]\[ (2 \times 10^{-3} \, \text{m})^2 = 4 \times 10^{-6} \, \text{m}^2 \][/tex]
So, our equation becomes:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times \frac{9.0 \times 10^{14} \, \text{C}^2}{4 \times 10^{-6} \, \text{m}^2} \][/tex]
Simplifying the fraction:
[tex]\[ \frac{9.0 \times 10^{14} \, \text{C}^2}{4 \times 10^{-6} \, \text{m}^2} = 2.25 \times 10^{20} \, \text{C}^2 / \text{m}^2 \][/tex]
Then, multiply this by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times 2.25 \times 10^{20} \, \text{C}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 2.02275 \times 10^{30} \, \text{N} \][/tex]
Thus, the electric force between the two charged spheres is [tex]\( 2.02275 \times 10^{30} \, \text{N} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.