Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the electric force between two charged spheres, we'll use Coulomb's Law. Coulomb's Law provides a way to calculate the electric force between two point charges. The formula is given by:
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the electric force between the charges,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the two charges,
- [tex]\( r \)[/tex] is the separation distance between the centers of the two charges.
Given:
- [tex]\( q_1 = -3.0 \times 10^7 \, \text{C} \)[/tex]
- [tex]\( q_2 = -3.0 \times 10^7 \, \text{C} \)[/tex]
- [tex]\( r = 2 \, \text{mm} = 2 \times 10^{-3} \, \text{m} \)[/tex]
Since the charges are the same, we can simplify the absolute value term to just the magnitude:
[tex]\[ |q_1 \cdot q_2| = |-3.0 \times 10^7 \, \text{C} \times -3.0 \times 10^7 \, \text{C}| = 9.0 \times 10^{14} \, \text{C}^2 \][/tex]
Next, we substitute these values into Coulomb's Law equation:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times \frac{9.0 \times 10^{14} \, \text{C}^2}{(2 \times 10^{-3} \, \text{m})^2} \][/tex]
Now, calculating the denominator which is [tex]\( r^2 \)[/tex]:
[tex]\[ (2 \times 10^{-3} \, \text{m})^2 = 4 \times 10^{-6} \, \text{m}^2 \][/tex]
So, our equation becomes:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times \frac{9.0 \times 10^{14} \, \text{C}^2}{4 \times 10^{-6} \, \text{m}^2} \][/tex]
Simplifying the fraction:
[tex]\[ \frac{9.0 \times 10^{14} \, \text{C}^2}{4 \times 10^{-6} \, \text{m}^2} = 2.25 \times 10^{20} \, \text{C}^2 / \text{m}^2 \][/tex]
Then, multiply this by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times 2.25 \times 10^{20} \, \text{C}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 2.02275 \times 10^{30} \, \text{N} \][/tex]
Thus, the electric force between the two charged spheres is [tex]\( 2.02275 \times 10^{30} \, \text{N} \)[/tex].
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the electric force between the charges,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the two charges,
- [tex]\( r \)[/tex] is the separation distance between the centers of the two charges.
Given:
- [tex]\( q_1 = -3.0 \times 10^7 \, \text{C} \)[/tex]
- [tex]\( q_2 = -3.0 \times 10^7 \, \text{C} \)[/tex]
- [tex]\( r = 2 \, \text{mm} = 2 \times 10^{-3} \, \text{m} \)[/tex]
Since the charges are the same, we can simplify the absolute value term to just the magnitude:
[tex]\[ |q_1 \cdot q_2| = |-3.0 \times 10^7 \, \text{C} \times -3.0 \times 10^7 \, \text{C}| = 9.0 \times 10^{14} \, \text{C}^2 \][/tex]
Next, we substitute these values into Coulomb's Law equation:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times \frac{9.0 \times 10^{14} \, \text{C}^2}{(2 \times 10^{-3} \, \text{m})^2} \][/tex]
Now, calculating the denominator which is [tex]\( r^2 \)[/tex]:
[tex]\[ (2 \times 10^{-3} \, \text{m})^2 = 4 \times 10^{-6} \, \text{m}^2 \][/tex]
So, our equation becomes:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times \frac{9.0 \times 10^{14} \, \text{C}^2}{4 \times 10^{-6} \, \text{m}^2} \][/tex]
Simplifying the fraction:
[tex]\[ \frac{9.0 \times 10^{14} \, \text{C}^2}{4 \times 10^{-6} \, \text{m}^2} = 2.25 \times 10^{20} \, \text{C}^2 / \text{m}^2 \][/tex]
Then, multiply this by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \times 2.25 \times 10^{20} \, \text{C}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 2.02275 \times 10^{30} \, \text{N} \][/tex]
Thus, the electric force between the two charged spheres is [tex]\( 2.02275 \times 10^{30} \, \text{N} \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.