Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve for the new pressure experienced by the piston when the volume of the chamber is reduced from 4.7 liters to 1.0 liter, we can use Boyle's Law. Boyle's Law states that for a given amount of gas at constant temperature, the pressure and volume of the gas are inversely proportional. Mathematically, this is represented as:
[tex]\[ P_1 \times V_1 = P_2 \times V_2 \][/tex]
Where:
- [tex]\( P_1 \)[/tex] is the initial pressure
- [tex]\( V_1 \)[/tex] is the initial volume
- [tex]\( P_2 \)[/tex] is the final pressure
- [tex]\( V_2 \)[/tex] is the final volume
Given the following values:
- Initial volume ([tex]\( V_1 \)[/tex]) = 4.7 liters
- Initial pressure ([tex]\( P_1 \)[/tex]) = 3.1 atmospheres
- Final volume ([tex]\( V_2 \)[/tex]) = 1.0 liter
We need to find the final pressure ([tex]\( P_2 \)[/tex]). We can rearrange the equation to solve for [tex]\( P_2 \)[/tex]:
[tex]\[ P_2 = \frac{P_1 \times V_1}{V_2} \][/tex]
Substitute the given values into the equation:
[tex]\[ P_2 = \frac{3.1 \, \text{atm} \times 4.7 \, \text{L}}{1.0 \, \text{L}} \][/tex]
Now calculate the result:
[tex]\[ P_2 = \frac{14.57 \, \text{atm} \cdot \text{L}}{1.0 \, \text{L}} \][/tex]
[tex]\[ P_2 = 14.57 \, \text{atm} \][/tex]
Therefore, the new pressure experienced by the piston when the volume of the chamber is reduced to 1.0 liter is 14.57 atmospheres.
[tex]\[ P_1 \times V_1 = P_2 \times V_2 \][/tex]
Where:
- [tex]\( P_1 \)[/tex] is the initial pressure
- [tex]\( V_1 \)[/tex] is the initial volume
- [tex]\( P_2 \)[/tex] is the final pressure
- [tex]\( V_2 \)[/tex] is the final volume
Given the following values:
- Initial volume ([tex]\( V_1 \)[/tex]) = 4.7 liters
- Initial pressure ([tex]\( P_1 \)[/tex]) = 3.1 atmospheres
- Final volume ([tex]\( V_2 \)[/tex]) = 1.0 liter
We need to find the final pressure ([tex]\( P_2 \)[/tex]). We can rearrange the equation to solve for [tex]\( P_2 \)[/tex]:
[tex]\[ P_2 = \frac{P_1 \times V_1}{V_2} \][/tex]
Substitute the given values into the equation:
[tex]\[ P_2 = \frac{3.1 \, \text{atm} \times 4.7 \, \text{L}}{1.0 \, \text{L}} \][/tex]
Now calculate the result:
[tex]\[ P_2 = \frac{14.57 \, \text{atm} \cdot \text{L}}{1.0 \, \text{L}} \][/tex]
[tex]\[ P_2 = 14.57 \, \text{atm} \][/tex]
Therefore, the new pressure experienced by the piston when the volume of the chamber is reduced to 1.0 liter is 14.57 atmospheres.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.