Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To calculate the average atomic mass of carbon, we need to take into account the isotopic abundance and the mass of each isotope. Here are the steps to solve this problem:
1. Determine the abundance of each isotope as a fraction:
- C-12 has an abundance of 98.90%. To convert this percentage to a fraction, divide by 100:
[tex]\[ \text{Abundance of C-12} = \frac{98.90}{100} = 0.9890 \][/tex]
- C-13 has an abundance of 1.10%. To convert this percentage to a fraction, divide by 100:
[tex]\[ \text{Abundance of C-13} = \frac{1.10}{100} = 0.0110 \][/tex]
2. Identify the atomic mass of each isotope:
- The atomic mass of C-12 is 12.000000 amu.
- The atomic mass of C-13 is 13.003354 amu.
3. Calculate the contribution of each isotope to the average atomic mass:
- Multiply the abundance of C-12 by its atomic mass:
[tex]\[ \text{Contribution of C-12} = 0.9890 \times 12.000000 = 11.868000 \][/tex]
- Multiply the abundance of C-13 by its atomic mass:
[tex]\[ \text{Contribution of C-13} = 0.0110 \times 13.003354 = 0.143037 \][/tex]
4. Sum the contributions to find the average atomic mass:
[tex]\[ \text{Average atomic mass} = 11.868000 + 0.143037 = 12.011037 \][/tex]
5. Round the average atomic mass to 2 decimal places:
- The average atomic mass, rounded to two decimal places, is:
[tex]\[ \text{Average atomic mass} \approx 12.01 \text{ amu} \][/tex]
Therefore, the average atomic mass of carbon is approximately 12.01 amu when rounded to two decimal places.
1. Determine the abundance of each isotope as a fraction:
- C-12 has an abundance of 98.90%. To convert this percentage to a fraction, divide by 100:
[tex]\[ \text{Abundance of C-12} = \frac{98.90}{100} = 0.9890 \][/tex]
- C-13 has an abundance of 1.10%. To convert this percentage to a fraction, divide by 100:
[tex]\[ \text{Abundance of C-13} = \frac{1.10}{100} = 0.0110 \][/tex]
2. Identify the atomic mass of each isotope:
- The atomic mass of C-12 is 12.000000 amu.
- The atomic mass of C-13 is 13.003354 amu.
3. Calculate the contribution of each isotope to the average atomic mass:
- Multiply the abundance of C-12 by its atomic mass:
[tex]\[ \text{Contribution of C-12} = 0.9890 \times 12.000000 = 11.868000 \][/tex]
- Multiply the abundance of C-13 by its atomic mass:
[tex]\[ \text{Contribution of C-13} = 0.0110 \times 13.003354 = 0.143037 \][/tex]
4. Sum the contributions to find the average atomic mass:
[tex]\[ \text{Average atomic mass} = 11.868000 + 0.143037 = 12.011037 \][/tex]
5. Round the average atomic mass to 2 decimal places:
- The average atomic mass, rounded to two decimal places, is:
[tex]\[ \text{Average atomic mass} \approx 12.01 \text{ amu} \][/tex]
Therefore, the average atomic mass of carbon is approximately 12.01 amu when rounded to two decimal places.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.