Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the annual percentage decrease in value [tex]\(x\)[/tex] given that a car's value halves in 6 years, we can use a mathematical approach to solve this problem.
1. Understand the Problem:
- Let's denote the initial value of the car as [tex]\(V\)[/tex].
- After 6 years, the value of the car is [tex]\(V/2\)[/tex].
- The car's value decreases by [tex]\(x\)[/tex]% each year.
2. Write the Formula for Depreciation:
The formula for the value of the car after [tex]\(t\)[/tex] years, considering an annual decrease of [tex]\(x\% ,\)[/tex] is:
[tex]\[ \text{final value} = \text{initial value} \times (1 - \frac{x}{100})^t \][/tex]
3. Apply the Given Information:
After 6 years, the final value is [tex]\(V/2\)[/tex]. So,
[tex]\[ \frac{V}{2} = V \times (1 - \frac{x}{100})^6 \][/tex]
4. Simplify the Equation:
Divide both sides by [tex]\(V\)[/tex]:
[tex]\[ \frac{1}{2} = (1 - \frac{x}{100})^6 \][/tex]
5. Solve for [tex]\((1 - \frac{x}{100})\)[/tex]:
Take the natural logarithm (ln) of both sides to solve for the base term:
[tex]\[ \ln(\frac{1}{2}) = \ln((1 - \frac{x}{100})^6) \][/tex]
[tex]\[ \ln(\frac{1}{2}) = 6 \cdot \ln(1 - \frac{x}{100}) \][/tex]
6. Isolate the Logarithmic Term:
[tex]\[ \ln(1 - \frac{x}{100}) = \frac{\ln(\frac{1}{2})}{6} \][/tex]
7. Evaluate the Terms:
The natural logarithm of 1/2 is a known value, [tex]\(\ln(\frac{1}{2}) = -0.6931\)[/tex]. Plug in this value:
[tex]\[ \ln(1 - \frac{x}{100}) = \frac{-0.6931}{6} \][/tex]
[tex]\[ \ln(1 - \frac{x}{100}) \approx -0.1155 \][/tex]
8. Exponentiate Both Sides to Remove Logarithm:
[tex]\[ 1 - \frac{x}{100} = e^{-0.1155} \][/tex]
[tex]\[ 1 - \frac{x}{100} \approx 0.8900 \][/tex]
9. Solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{x}{100} = 1 - 0.8900 \][/tex]
[tex]\[ \frac{x}{100} \approx 0.1100 \][/tex]
[tex]\[ x \approx 11.0 \][/tex]
10. Finalize the Answer and Round to 1 Decimal Place:
[tex]\[ x \approx 10.9 \][/tex]
Therefore, the annual percentage decrease [tex]\(x\)[/tex] is approximately 10.9%.
1. Understand the Problem:
- Let's denote the initial value of the car as [tex]\(V\)[/tex].
- After 6 years, the value of the car is [tex]\(V/2\)[/tex].
- The car's value decreases by [tex]\(x\)[/tex]% each year.
2. Write the Formula for Depreciation:
The formula for the value of the car after [tex]\(t\)[/tex] years, considering an annual decrease of [tex]\(x\% ,\)[/tex] is:
[tex]\[ \text{final value} = \text{initial value} \times (1 - \frac{x}{100})^t \][/tex]
3. Apply the Given Information:
After 6 years, the final value is [tex]\(V/2\)[/tex]. So,
[tex]\[ \frac{V}{2} = V \times (1 - \frac{x}{100})^6 \][/tex]
4. Simplify the Equation:
Divide both sides by [tex]\(V\)[/tex]:
[tex]\[ \frac{1}{2} = (1 - \frac{x}{100})^6 \][/tex]
5. Solve for [tex]\((1 - \frac{x}{100})\)[/tex]:
Take the natural logarithm (ln) of both sides to solve for the base term:
[tex]\[ \ln(\frac{1}{2}) = \ln((1 - \frac{x}{100})^6) \][/tex]
[tex]\[ \ln(\frac{1}{2}) = 6 \cdot \ln(1 - \frac{x}{100}) \][/tex]
6. Isolate the Logarithmic Term:
[tex]\[ \ln(1 - \frac{x}{100}) = \frac{\ln(\frac{1}{2})}{6} \][/tex]
7. Evaluate the Terms:
The natural logarithm of 1/2 is a known value, [tex]\(\ln(\frac{1}{2}) = -0.6931\)[/tex]. Plug in this value:
[tex]\[ \ln(1 - \frac{x}{100}) = \frac{-0.6931}{6} \][/tex]
[tex]\[ \ln(1 - \frac{x}{100}) \approx -0.1155 \][/tex]
8. Exponentiate Both Sides to Remove Logarithm:
[tex]\[ 1 - \frac{x}{100} = e^{-0.1155} \][/tex]
[tex]\[ 1 - \frac{x}{100} \approx 0.8900 \][/tex]
9. Solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{x}{100} = 1 - 0.8900 \][/tex]
[tex]\[ \frac{x}{100} \approx 0.1100 \][/tex]
[tex]\[ x \approx 11.0 \][/tex]
10. Finalize the Answer and Round to 1 Decimal Place:
[tex]\[ x \approx 10.9 \][/tex]
Therefore, the annual percentage decrease [tex]\(x\)[/tex] is approximately 10.9%.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.