Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the annual percentage decrease in value [tex]\(x\)[/tex] given that a car's value halves in 6 years, we can use a mathematical approach to solve this problem.
1. Understand the Problem:
- Let's denote the initial value of the car as [tex]\(V\)[/tex].
- After 6 years, the value of the car is [tex]\(V/2\)[/tex].
- The car's value decreases by [tex]\(x\)[/tex]% each year.
2. Write the Formula for Depreciation:
The formula for the value of the car after [tex]\(t\)[/tex] years, considering an annual decrease of [tex]\(x\% ,\)[/tex] is:
[tex]\[ \text{final value} = \text{initial value} \times (1 - \frac{x}{100})^t \][/tex]
3. Apply the Given Information:
After 6 years, the final value is [tex]\(V/2\)[/tex]. So,
[tex]\[ \frac{V}{2} = V \times (1 - \frac{x}{100})^6 \][/tex]
4. Simplify the Equation:
Divide both sides by [tex]\(V\)[/tex]:
[tex]\[ \frac{1}{2} = (1 - \frac{x}{100})^6 \][/tex]
5. Solve for [tex]\((1 - \frac{x}{100})\)[/tex]:
Take the natural logarithm (ln) of both sides to solve for the base term:
[tex]\[ \ln(\frac{1}{2}) = \ln((1 - \frac{x}{100})^6) \][/tex]
[tex]\[ \ln(\frac{1}{2}) = 6 \cdot \ln(1 - \frac{x}{100}) \][/tex]
6. Isolate the Logarithmic Term:
[tex]\[ \ln(1 - \frac{x}{100}) = \frac{\ln(\frac{1}{2})}{6} \][/tex]
7. Evaluate the Terms:
The natural logarithm of 1/2 is a known value, [tex]\(\ln(\frac{1}{2}) = -0.6931\)[/tex]. Plug in this value:
[tex]\[ \ln(1 - \frac{x}{100}) = \frac{-0.6931}{6} \][/tex]
[tex]\[ \ln(1 - \frac{x}{100}) \approx -0.1155 \][/tex]
8. Exponentiate Both Sides to Remove Logarithm:
[tex]\[ 1 - \frac{x}{100} = e^{-0.1155} \][/tex]
[tex]\[ 1 - \frac{x}{100} \approx 0.8900 \][/tex]
9. Solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{x}{100} = 1 - 0.8900 \][/tex]
[tex]\[ \frac{x}{100} \approx 0.1100 \][/tex]
[tex]\[ x \approx 11.0 \][/tex]
10. Finalize the Answer and Round to 1 Decimal Place:
[tex]\[ x \approx 10.9 \][/tex]
Therefore, the annual percentage decrease [tex]\(x\)[/tex] is approximately 10.9%.
1. Understand the Problem:
- Let's denote the initial value of the car as [tex]\(V\)[/tex].
- After 6 years, the value of the car is [tex]\(V/2\)[/tex].
- The car's value decreases by [tex]\(x\)[/tex]% each year.
2. Write the Formula for Depreciation:
The formula for the value of the car after [tex]\(t\)[/tex] years, considering an annual decrease of [tex]\(x\% ,\)[/tex] is:
[tex]\[ \text{final value} = \text{initial value} \times (1 - \frac{x}{100})^t \][/tex]
3. Apply the Given Information:
After 6 years, the final value is [tex]\(V/2\)[/tex]. So,
[tex]\[ \frac{V}{2} = V \times (1 - \frac{x}{100})^6 \][/tex]
4. Simplify the Equation:
Divide both sides by [tex]\(V\)[/tex]:
[tex]\[ \frac{1}{2} = (1 - \frac{x}{100})^6 \][/tex]
5. Solve for [tex]\((1 - \frac{x}{100})\)[/tex]:
Take the natural logarithm (ln) of both sides to solve for the base term:
[tex]\[ \ln(\frac{1}{2}) = \ln((1 - \frac{x}{100})^6) \][/tex]
[tex]\[ \ln(\frac{1}{2}) = 6 \cdot \ln(1 - \frac{x}{100}) \][/tex]
6. Isolate the Logarithmic Term:
[tex]\[ \ln(1 - \frac{x}{100}) = \frac{\ln(\frac{1}{2})}{6} \][/tex]
7. Evaluate the Terms:
The natural logarithm of 1/2 is a known value, [tex]\(\ln(\frac{1}{2}) = -0.6931\)[/tex]. Plug in this value:
[tex]\[ \ln(1 - \frac{x}{100}) = \frac{-0.6931}{6} \][/tex]
[tex]\[ \ln(1 - \frac{x}{100}) \approx -0.1155 \][/tex]
8. Exponentiate Both Sides to Remove Logarithm:
[tex]\[ 1 - \frac{x}{100} = e^{-0.1155} \][/tex]
[tex]\[ 1 - \frac{x}{100} \approx 0.8900 \][/tex]
9. Solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{x}{100} = 1 - 0.8900 \][/tex]
[tex]\[ \frac{x}{100} \approx 0.1100 \][/tex]
[tex]\[ x \approx 11.0 \][/tex]
10. Finalize the Answer and Round to 1 Decimal Place:
[tex]\[ x \approx 10.9 \][/tex]
Therefore, the annual percentage decrease [tex]\(x\)[/tex] is approximately 10.9%.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.