At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the problem systematically, let's analyze and answer each part step by step:
### (a) Use the Leading Coefficient Test to determine the graph's end behavior.
Given the function [tex]\( f(x) = x^2 - 1x^2 \)[/tex], we can simplify it as follows:
[tex]\[ f(x) = x^2 - x^2 \][/tex]
[tex]\[ f(x) = 0 \][/tex]
However, assuming a typographical error in the function, leading to [tex]\( f(x) = -x^2 \)[/tex], the leading coefficient (the coefficient of [tex]\( x^2 \)[/tex]) is [tex]\(-1\)[/tex], which is negative. Additionally, since the degree (highest exponent of [tex]\( x \)[/tex]) is 2, which is even, we can use the Leading Coefficient Test:
- If the leading coefficient is negative (and the degree is even), the graph falls left and falls right.
Thus, the correct answer is:
D. The graph of f(x) falls left and falls right.
### (b) Find the x-intercepts.
To find the x-intercepts, we need to set the function equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ \text{Given function:} \quad f(x) = -x^2 \][/tex]
[tex]\[ -x^2 = 0 \][/tex]
[tex]\[ x^2 = 0 \][/tex]
[tex]\[ x = 0 \][/tex]
So, the x-intercepts are:
[tex]\[ x = [0] \][/tex]
### At which zeros does the graph of the function cross the x-axis?
The graph will cross the x-axis at those x-intercepts where the graph moves from one side of the x-axis to the other. Given the nature of quadratic functions and specifically the behavior of [tex]\( -x^2 \)[/tex], the graph touches the x-axis and turns around at [tex]\( x = 0 \)[/tex] but does not actually cross it.
So, the correct option is:
B. There are no x-intercepts at which the graph crosses the x-axis.
### At which zeros does the graph of the function touch the x-axis and turn around?
From the calculation above, at [tex]\( x = 0 \)[/tex], the graph touches the x-axis and turns around since it is a parabola opening downwards.
Thus, the correct option is:
A. x = 0
### (a) Use the Leading Coefficient Test to determine the graph's end behavior.
Given the function [tex]\( f(x) = x^2 - 1x^2 \)[/tex], we can simplify it as follows:
[tex]\[ f(x) = x^2 - x^2 \][/tex]
[tex]\[ f(x) = 0 \][/tex]
However, assuming a typographical error in the function, leading to [tex]\( f(x) = -x^2 \)[/tex], the leading coefficient (the coefficient of [tex]\( x^2 \)[/tex]) is [tex]\(-1\)[/tex], which is negative. Additionally, since the degree (highest exponent of [tex]\( x \)[/tex]) is 2, which is even, we can use the Leading Coefficient Test:
- If the leading coefficient is negative (and the degree is even), the graph falls left and falls right.
Thus, the correct answer is:
D. The graph of f(x) falls left and falls right.
### (b) Find the x-intercepts.
To find the x-intercepts, we need to set the function equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ \text{Given function:} \quad f(x) = -x^2 \][/tex]
[tex]\[ -x^2 = 0 \][/tex]
[tex]\[ x^2 = 0 \][/tex]
[tex]\[ x = 0 \][/tex]
So, the x-intercepts are:
[tex]\[ x = [0] \][/tex]
### At which zeros does the graph of the function cross the x-axis?
The graph will cross the x-axis at those x-intercepts where the graph moves from one side of the x-axis to the other. Given the nature of quadratic functions and specifically the behavior of [tex]\( -x^2 \)[/tex], the graph touches the x-axis and turns around at [tex]\( x = 0 \)[/tex] but does not actually cross it.
So, the correct option is:
B. There are no x-intercepts at which the graph crosses the x-axis.
### At which zeros does the graph of the function touch the x-axis and turn around?
From the calculation above, at [tex]\( x = 0 \)[/tex], the graph touches the x-axis and turns around since it is a parabola opening downwards.
Thus, the correct option is:
A. x = 0
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.