Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's work through the problem step-by-step to determine the mean enthalpy of formation (∆Hv) for one mole of ammonia (NH3) from its elements within the specified temperature range.
### Given Data:
We have the following given values:
- Temperature 1 (T1): 673 K
- Temperature 2 (T2): 773 K
- Equilibrium constant at 673 K (Kp1): 1.64 x 10
- Equilibrium constant at 773 K (Kp2): 11.44 x 10^5
- Universal gas constant (R): 8.314 J/(mol·K)
### Step-by-Step Solution:
1. Write the Van't Hoff equation:
The Van't Hoff equation relates the change in the equilibrium constant with temperature and the change in enthalpy:
[tex]\[ \ln\left(\frac{K_{p2}}{K_{p1}}\right) = -\frac{\Delta H_v}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \][/tex]
2. Calculate the ratio of equilibrium constants:
[tex]\[ \ln\left(\frac{K_{p2}}{K_{p1}}\right) \][/tex]
Given:
[tex]\[ K_{p1} = 1.64 \times 10 \][/tex]
[tex]\[ K_{p2} = 11.44 \times 10^5 \][/tex]
Therefore:
[tex]\[ \ln\left(\frac{K_{p2}}{K_{p1}}\right) \approx 11.152760116091727 \][/tex]
3. Calculate the inverse of the temperatures:
[tex]\[ \frac{1}{T_1} = \frac{1}{673} \approx 0.0014858841010401188 \text{ K}^{-1} \][/tex]
[tex]\[ \frac{1}{T_2} = \frac{1}{773} \approx 0.00129366106080207 \text{ K}^{-1} \][/tex]
4. Substitute all known quantities into the Van't Hoff equation and solve for ∆Hv:
[tex]\[ 11.152760116091727 = -\frac{\Delta H_v}{8.314} \left(0.00129366106080207 - 0.0014858841010401188 \right) \][/tex]
Calculate the difference in inverse temperatures:
[tex]\[ 0.00129366106080207 - 0.0014858841010401188 \approx -0.0001922230402380488 \text{ K}^{-1} \][/tex]
5. Rearrange to solve for ∆Hv:
[tex]\[ \Delta H_v = -11.152760116091727 \times 8.314 \times \left(-0.0001922230402380488\right) \][/tex]
[tex]\[ \Delta H_v \approx 482377.3856159868 \text{ J/mol} \][/tex]
### Conclusion:
The mean enthalpy of formation (∆Hv) for one mole of ammonia from its elements in the temperature range of 673 K to 773 K is approximately 482,377.39 J/mol or 482.38 kJ/mol.
### Given Data:
We have the following given values:
- Temperature 1 (T1): 673 K
- Temperature 2 (T2): 773 K
- Equilibrium constant at 673 K (Kp1): 1.64 x 10
- Equilibrium constant at 773 K (Kp2): 11.44 x 10^5
- Universal gas constant (R): 8.314 J/(mol·K)
### Step-by-Step Solution:
1. Write the Van't Hoff equation:
The Van't Hoff equation relates the change in the equilibrium constant with temperature and the change in enthalpy:
[tex]\[ \ln\left(\frac{K_{p2}}{K_{p1}}\right) = -\frac{\Delta H_v}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \][/tex]
2. Calculate the ratio of equilibrium constants:
[tex]\[ \ln\left(\frac{K_{p2}}{K_{p1}}\right) \][/tex]
Given:
[tex]\[ K_{p1} = 1.64 \times 10 \][/tex]
[tex]\[ K_{p2} = 11.44 \times 10^5 \][/tex]
Therefore:
[tex]\[ \ln\left(\frac{K_{p2}}{K_{p1}}\right) \approx 11.152760116091727 \][/tex]
3. Calculate the inverse of the temperatures:
[tex]\[ \frac{1}{T_1} = \frac{1}{673} \approx 0.0014858841010401188 \text{ K}^{-1} \][/tex]
[tex]\[ \frac{1}{T_2} = \frac{1}{773} \approx 0.00129366106080207 \text{ K}^{-1} \][/tex]
4. Substitute all known quantities into the Van't Hoff equation and solve for ∆Hv:
[tex]\[ 11.152760116091727 = -\frac{\Delta H_v}{8.314} \left(0.00129366106080207 - 0.0014858841010401188 \right) \][/tex]
Calculate the difference in inverse temperatures:
[tex]\[ 0.00129366106080207 - 0.0014858841010401188 \approx -0.0001922230402380488 \text{ K}^{-1} \][/tex]
5. Rearrange to solve for ∆Hv:
[tex]\[ \Delta H_v = -11.152760116091727 \times 8.314 \times \left(-0.0001922230402380488\right) \][/tex]
[tex]\[ \Delta H_v \approx 482377.3856159868 \text{ J/mol} \][/tex]
### Conclusion:
The mean enthalpy of formation (∆Hv) for one mole of ammonia from its elements in the temperature range of 673 K to 773 K is approximately 482,377.39 J/mol or 482.38 kJ/mol.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.