Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
E. 45° + 360°n, 135° + 360°n, 225° + 360°n, 315° + 360°n
Step-by-step explanation:
Given trigonometric equation:
[tex]\sin^2(2x)=1[/tex]
To solve the given trigonometric equation for all x, begin by taking the square root of both sides:
[tex]\sin(2x)=\pm 1[/tex]
According to the unit circle, the sine of an angle is equal to 1 when θ = 90°, and the sine of an angle is equal to -1 when θ = 270°. Therefore:
[tex]2x=90^{\circ} \\\\2x=270^{\circ}[/tex]
Since the sine function is a periodic with a period of 360°, it repeats its values every 360°. Therefore, when solving trigonometric equations involving sine, we need to add multiples of 360° to each solution to account for all possible solutions within the given range. Therefore:
[tex]2x=90^{\circ}+360^{\circ}n \\\\2x=270^{\circ}+360^{\circ}n[/tex]
To solve for x, divide both sides of each equation by 2:
[tex]\dfrac{2x}{2}=\dfrac{90^{\circ}+360^{\circ}n}{2}\\\\\\x=45^{\circ}+180^{\circ}n[/tex] [tex]\dfrac{2x}{2}=\dfrac{270^{\circ}+360^{\circ}n}{2}\\\\\\x=135^{\circ}+180^{\circ}n[/tex]
So, the solutions of the given trigonometric equation, where n is an integer, are:
[tex]x=45^{\circ}+180^{\circ}n\\\\x=135^{\circ}+180^{\circ}n[/tex]
To rewrite this using +360°n notation, find all the solutions within the interval 0 ≤ x ≤ 360°, then add 360°n to each. Therefore, the solutions are:
[tex]\Large\boxed{\begin{array}{l}x=45^{\circ}+360^{\circ}n\\x=135^{\circ}+360^{\circ}n\\x=225^{\circ}+360^{\circ}n\\x=315^{\circ}+360^{\circ}n\end{array}}[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.