Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
E. 45° + 360°n, 135° + 360°n, 225° + 360°n, 315° + 360°n
Step-by-step explanation:
Given trigonometric equation:
[tex]\sin^2(2x)=1[/tex]
To solve the given trigonometric equation for all x, begin by taking the square root of both sides:
[tex]\sin(2x)=\pm 1[/tex]
According to the unit circle, the sine of an angle is equal to 1 when θ = 90°, and the sine of an angle is equal to -1 when θ = 270°. Therefore:
[tex]2x=90^{\circ} \\\\2x=270^{\circ}[/tex]
Since the sine function is a periodic with a period of 360°, it repeats its values every 360°. Therefore, when solving trigonometric equations involving sine, we need to add multiples of 360° to each solution to account for all possible solutions within the given range. Therefore:
[tex]2x=90^{\circ}+360^{\circ}n \\\\2x=270^{\circ}+360^{\circ}n[/tex]
To solve for x, divide both sides of each equation by 2:
[tex]\dfrac{2x}{2}=\dfrac{90^{\circ}+360^{\circ}n}{2}\\\\\\x=45^{\circ}+180^{\circ}n[/tex] [tex]\dfrac{2x}{2}=\dfrac{270^{\circ}+360^{\circ}n}{2}\\\\\\x=135^{\circ}+180^{\circ}n[/tex]
So, the solutions of the given trigonometric equation, where n is an integer, are:
[tex]x=45^{\circ}+180^{\circ}n\\\\x=135^{\circ}+180^{\circ}n[/tex]
To rewrite this using +360°n notation, find all the solutions within the interval 0 ≤ x ≤ 360°, then add 360°n to each. Therefore, the solutions are:
[tex]\Large\boxed{\begin{array}{l}x=45^{\circ}+360^{\circ}n\\x=135^{\circ}+360^{\circ}n\\x=225^{\circ}+360^{\circ}n\\x=315^{\circ}+360^{\circ}n\end{array}}[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.