Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

What is the positive radian measure of the larger angle formed by the hands of a clock at 1 o'clock? Simplify your answer completely.
Answer Attempt 1 out of 2
Submit Answer

Sagot :

Certainly! Let's find the positive radian measure of the larger angle formed by the hands of a clock at 1 o'clock. Here’s a detailed step-by-step solution:

1. Determine the positions of the hour and minute hands:
- At 1 o'clock, the minute hand is pointing at the 12.
- The hour hand at 1 o'clock is pointing at the 1.

2. Calculate the degree measure of each hour on a clock:
- Since a full circle is 360 degrees and there are 12 hours on a clock, each hour represents:
[tex]\[ \frac{360}{12} = 30 \text{ degrees} \][/tex]
- Therefore, the hour hand at the 1 is at:
[tex]\[ 1 \times 30 = 30 \text{ degrees} \][/tex]

3. Determine the minute hand’s position in degrees:
- At the 12, the minute hand is at 0 degrees.

4. Calculate the smaller angle between the hour and minute hands:
- Since the hour hand is at 30 degrees and the minute hand is at 0 degrees, the smaller angle is:
[tex]\[ |30 - 0| = 30 \text{ degrees} \][/tex]

5. Calculate the larger angle between the hour and minute hands:
- The larger angle is the complement to 360 degrees:
[tex]\[ 360 - 30 = 330 \text{ degrees} \][/tex]

6. Convert the larger angle from degrees to radians:
- To convert degrees to radians, use the fact that 180 degrees equals [tex]\(\pi\)[/tex] radians:
[tex]\[ 330 \text{ degrees} \times \frac{\pi \text{ radians}}{180 \text{ degrees}} = \frac{330\pi}{180} \text{ radians} \][/tex]
- Simplify the fraction [tex]\(\frac{330\pi}{180}\)[/tex]:
[tex]\[ \frac{330\pi}{180} = \frac{11\pi}{6} \text{ radians} \][/tex]

Therefore, the positive radian measure of the larger angle formed by the hands of a clock at 1 o'clock is:
[tex]\[ \boxed{\frac{11\pi}{6} \ \text{radians}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.