At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's analyze each statement about the inequality [tex]\(6x > 99\)[/tex].
To solve this, we need to check whether each given value of [tex]\(x\)[/tex] satisfies the inequality.
### Statement a: 0 is a solution.
- Substitute [tex]\(x = 0\)[/tex] into the inequality.
- [tex]\(6 \cdot 0 = 0\)[/tex]
- Check if [tex]\(0 > 99\)[/tex].
[tex]\(0\)[/tex] is not greater than [tex]\(99\)[/tex], so this statement is False.
### Statement b: 13 is a solution.
- Substitute [tex]\(x = 13\)[/tex] into the inequality.
- [tex]\(6 \cdot 13 = 78\)[/tex]
- Check if [tex]\(78 > 99\)[/tex].
[tex]\(78\)[/tex] is not greater than [tex]\(99\)[/tex], so this statement is False.
### Statement c: 16.5 is a solution.
- Substitute [tex]\(x = 16.5\)[/tex] into the inequality.
- [tex]\(6 \cdot 16.5 = 99\)[/tex]
- Check if [tex]\(99 > 99\)[/tex].
[tex]\(99\)[/tex] is not greater than [tex]\(99\)[/tex]; it is equal. Therefore, this statement is False.
### Statement d: 64 is a solution.
- Substitute [tex]\(x = 64\)[/tex] into the inequality.
- [tex]\(6 \cdot 64 = 384\)[/tex]
- Check if [tex]\(384 > 99\)[/tex].
[tex]\(384\)[/tex] is indeed greater than [tex]\(99\)[/tex], so this statement is True.
### Statement e: There is only one solution.
From the previous checks:
- [tex]\(x = 0\)[/tex] does not satisfy the inequality.
- [tex]\(x = 13\)[/tex] does not satisfy the inequality.
- [tex]\(x = 16.5\)[/tex] does not satisfy the inequality.
- [tex]\(x = 64\)[/tex] satisfies the inequality.
Since only [tex]\(x = 64\)[/tex] satisfies the inequality from the given options, the statement that there is only one solution in the given set of values is True.
### Summary:
- a. [tex]\(0\)[/tex] is a solution. False
- b. [tex]\(13\)[/tex] is a solution. False
- c. [tex]\(16.5\)[/tex] is a solution. False
- d. [tex]\(64\)[/tex] is a solution. True
- e. There is only one solution. True
To solve this, we need to check whether each given value of [tex]\(x\)[/tex] satisfies the inequality.
### Statement a: 0 is a solution.
- Substitute [tex]\(x = 0\)[/tex] into the inequality.
- [tex]\(6 \cdot 0 = 0\)[/tex]
- Check if [tex]\(0 > 99\)[/tex].
[tex]\(0\)[/tex] is not greater than [tex]\(99\)[/tex], so this statement is False.
### Statement b: 13 is a solution.
- Substitute [tex]\(x = 13\)[/tex] into the inequality.
- [tex]\(6 \cdot 13 = 78\)[/tex]
- Check if [tex]\(78 > 99\)[/tex].
[tex]\(78\)[/tex] is not greater than [tex]\(99\)[/tex], so this statement is False.
### Statement c: 16.5 is a solution.
- Substitute [tex]\(x = 16.5\)[/tex] into the inequality.
- [tex]\(6 \cdot 16.5 = 99\)[/tex]
- Check if [tex]\(99 > 99\)[/tex].
[tex]\(99\)[/tex] is not greater than [tex]\(99\)[/tex]; it is equal. Therefore, this statement is False.
### Statement d: 64 is a solution.
- Substitute [tex]\(x = 64\)[/tex] into the inequality.
- [tex]\(6 \cdot 64 = 384\)[/tex]
- Check if [tex]\(384 > 99\)[/tex].
[tex]\(384\)[/tex] is indeed greater than [tex]\(99\)[/tex], so this statement is True.
### Statement e: There is only one solution.
From the previous checks:
- [tex]\(x = 0\)[/tex] does not satisfy the inequality.
- [tex]\(x = 13\)[/tex] does not satisfy the inequality.
- [tex]\(x = 16.5\)[/tex] does not satisfy the inequality.
- [tex]\(x = 64\)[/tex] satisfies the inequality.
Since only [tex]\(x = 64\)[/tex] satisfies the inequality from the given options, the statement that there is only one solution in the given set of values is True.
### Summary:
- a. [tex]\(0\)[/tex] is a solution. False
- b. [tex]\(13\)[/tex] is a solution. False
- c. [tex]\(16.5\)[/tex] is a solution. False
- d. [tex]\(64\)[/tex] is a solution. True
- e. There is only one solution. True
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.