Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's analyze each statement about the inequality [tex]\(6x > 99\)[/tex].
To solve this, we need to check whether each given value of [tex]\(x\)[/tex] satisfies the inequality.
### Statement a: 0 is a solution.
- Substitute [tex]\(x = 0\)[/tex] into the inequality.
- [tex]\(6 \cdot 0 = 0\)[/tex]
- Check if [tex]\(0 > 99\)[/tex].
[tex]\(0\)[/tex] is not greater than [tex]\(99\)[/tex], so this statement is False.
### Statement b: 13 is a solution.
- Substitute [tex]\(x = 13\)[/tex] into the inequality.
- [tex]\(6 \cdot 13 = 78\)[/tex]
- Check if [tex]\(78 > 99\)[/tex].
[tex]\(78\)[/tex] is not greater than [tex]\(99\)[/tex], so this statement is False.
### Statement c: 16.5 is a solution.
- Substitute [tex]\(x = 16.5\)[/tex] into the inequality.
- [tex]\(6 \cdot 16.5 = 99\)[/tex]
- Check if [tex]\(99 > 99\)[/tex].
[tex]\(99\)[/tex] is not greater than [tex]\(99\)[/tex]; it is equal. Therefore, this statement is False.
### Statement d: 64 is a solution.
- Substitute [tex]\(x = 64\)[/tex] into the inequality.
- [tex]\(6 \cdot 64 = 384\)[/tex]
- Check if [tex]\(384 > 99\)[/tex].
[tex]\(384\)[/tex] is indeed greater than [tex]\(99\)[/tex], so this statement is True.
### Statement e: There is only one solution.
From the previous checks:
- [tex]\(x = 0\)[/tex] does not satisfy the inequality.
- [tex]\(x = 13\)[/tex] does not satisfy the inequality.
- [tex]\(x = 16.5\)[/tex] does not satisfy the inequality.
- [tex]\(x = 64\)[/tex] satisfies the inequality.
Since only [tex]\(x = 64\)[/tex] satisfies the inequality from the given options, the statement that there is only one solution in the given set of values is True.
### Summary:
- a. [tex]\(0\)[/tex] is a solution. False
- b. [tex]\(13\)[/tex] is a solution. False
- c. [tex]\(16.5\)[/tex] is a solution. False
- d. [tex]\(64\)[/tex] is a solution. True
- e. There is only one solution. True
To solve this, we need to check whether each given value of [tex]\(x\)[/tex] satisfies the inequality.
### Statement a: 0 is a solution.
- Substitute [tex]\(x = 0\)[/tex] into the inequality.
- [tex]\(6 \cdot 0 = 0\)[/tex]
- Check if [tex]\(0 > 99\)[/tex].
[tex]\(0\)[/tex] is not greater than [tex]\(99\)[/tex], so this statement is False.
### Statement b: 13 is a solution.
- Substitute [tex]\(x = 13\)[/tex] into the inequality.
- [tex]\(6 \cdot 13 = 78\)[/tex]
- Check if [tex]\(78 > 99\)[/tex].
[tex]\(78\)[/tex] is not greater than [tex]\(99\)[/tex], so this statement is False.
### Statement c: 16.5 is a solution.
- Substitute [tex]\(x = 16.5\)[/tex] into the inequality.
- [tex]\(6 \cdot 16.5 = 99\)[/tex]
- Check if [tex]\(99 > 99\)[/tex].
[tex]\(99\)[/tex] is not greater than [tex]\(99\)[/tex]; it is equal. Therefore, this statement is False.
### Statement d: 64 is a solution.
- Substitute [tex]\(x = 64\)[/tex] into the inequality.
- [tex]\(6 \cdot 64 = 384\)[/tex]
- Check if [tex]\(384 > 99\)[/tex].
[tex]\(384\)[/tex] is indeed greater than [tex]\(99\)[/tex], so this statement is True.
### Statement e: There is only one solution.
From the previous checks:
- [tex]\(x = 0\)[/tex] does not satisfy the inequality.
- [tex]\(x = 13\)[/tex] does not satisfy the inequality.
- [tex]\(x = 16.5\)[/tex] does not satisfy the inequality.
- [tex]\(x = 64\)[/tex] satisfies the inequality.
Since only [tex]\(x = 64\)[/tex] satisfies the inequality from the given options, the statement that there is only one solution in the given set of values is True.
### Summary:
- a. [tex]\(0\)[/tex] is a solution. False
- b. [tex]\(13\)[/tex] is a solution. False
- c. [tex]\(16.5\)[/tex] is a solution. False
- d. [tex]\(64\)[/tex] is a solution. True
- e. There is only one solution. True
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.