Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the smallest number greater than 100,000 that is exactly divisible by each of 8, 15, and 21, we can follow these steps:
1. Identify the least common multiple (LCM) of the given numbers:
- The numbers we are dealing with are 8, 15, and 21.
- To find the LCM, we first find the prime factorizations of these numbers:
- [tex]\(8 = 2^3\)[/tex]
- [tex]\(15 = 3 \cdot 5\)[/tex]
- [tex]\(21 = 3 \cdot 7\)[/tex]
- The LCM is found by taking the highest power of each prime number that appears in the factorizations:
- For [tex]\(2\)[/tex], the highest power is [tex]\(2^3\)[/tex].
- For [tex]\(3\)[/tex], the highest power is [tex]\(3^1\)[/tex].
- For [tex]\(5\)[/tex], the highest power is [tex]\(5^1\)[/tex].
- For [tex]\(7\)[/tex], the highest power is [tex]\(7^1\)[/tex].
- Multiply these together to get the LCM:
[tex]\[ LCM = 2^3 \cdot 3^1 \cdot 5^1 \cdot 7^1 = 8 \cdot 3 \cdot 5 \cdot 7 \][/tex]
[tex]\[ LCM = 8 \cdot 3 = 24 \][/tex]
[tex]\[ 24 \cdot 5 = 120 \][/tex]
[tex]\[ 120 \cdot 7 = 840 \][/tex]
- Therefore, the least common multiple of 8, 15, and 21 is 840.
2. Find the number greater than 100,000 which is divisible by 840:
- To find the smallest number greater than 100,000 that is divisible by 840, we divide 100,000 by 840 and take the ceiling of the result, then multiply back by 840.
- Perform the division:
[tex]\[ \frac{100,000}{840} \approx 119.0476 \][/tex]
- Take the ceiling of [tex]\(119.0476\)[/tex], which is 120.
- Multiply back by 840 to find the number:
[tex]\[ 120 \cdot 840 = 100,800 \][/tex]
So, the least number greater than 100,000 that is exactly divisible by 8, 15, and 21 is 100,800.
1. Identify the least common multiple (LCM) of the given numbers:
- The numbers we are dealing with are 8, 15, and 21.
- To find the LCM, we first find the prime factorizations of these numbers:
- [tex]\(8 = 2^3\)[/tex]
- [tex]\(15 = 3 \cdot 5\)[/tex]
- [tex]\(21 = 3 \cdot 7\)[/tex]
- The LCM is found by taking the highest power of each prime number that appears in the factorizations:
- For [tex]\(2\)[/tex], the highest power is [tex]\(2^3\)[/tex].
- For [tex]\(3\)[/tex], the highest power is [tex]\(3^1\)[/tex].
- For [tex]\(5\)[/tex], the highest power is [tex]\(5^1\)[/tex].
- For [tex]\(7\)[/tex], the highest power is [tex]\(7^1\)[/tex].
- Multiply these together to get the LCM:
[tex]\[ LCM = 2^3 \cdot 3^1 \cdot 5^1 \cdot 7^1 = 8 \cdot 3 \cdot 5 \cdot 7 \][/tex]
[tex]\[ LCM = 8 \cdot 3 = 24 \][/tex]
[tex]\[ 24 \cdot 5 = 120 \][/tex]
[tex]\[ 120 \cdot 7 = 840 \][/tex]
- Therefore, the least common multiple of 8, 15, and 21 is 840.
2. Find the number greater than 100,000 which is divisible by 840:
- To find the smallest number greater than 100,000 that is divisible by 840, we divide 100,000 by 840 and take the ceiling of the result, then multiply back by 840.
- Perform the division:
[tex]\[ \frac{100,000}{840} \approx 119.0476 \][/tex]
- Take the ceiling of [tex]\(119.0476\)[/tex], which is 120.
- Multiply back by 840 to find the number:
[tex]\[ 120 \cdot 840 = 100,800 \][/tex]
So, the least number greater than 100,000 that is exactly divisible by 8, 15, and 21 is 100,800.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.