Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's calculate the volume of a cylinder with the given dimensions step-by-step.
1. Convert the diameter to centimeters:
- Given diameter = 160 mm.
- Since 1 cm = 10 mm, we convert the diameter from mm to cm:
[tex]\[ \text{Diameter (cm)} = 160 \, \text{mm} \times \frac{1 \, \text{cm}}{10 \, \text{mm}} = 16 \, \text{cm} \][/tex]
2. Find the radius:
- The radius is half of the diameter.
[tex]\[ \text{Radius (cm)} = \frac{\text{Diameter (cm)}}{2} = \frac{16 \, \text{cm}}{2} = 8 \, \text{cm} \][/tex]
3. Calculate the volume of the cylinder:
- The formula for the volume [tex]\(V\)[/tex] of a cylinder is given by:
[tex]\[ V = \pi r^2 h \][/tex]
where:
- [tex]\(r\)[/tex] is the radius
- [tex]\(h\)[/tex] is the height
- We substitute the radius [tex]\(r = 8 \, \text{cm}\)[/tex] and the height [tex]\(h = 6 \, \text{cm}\)[/tex] into the formula:
[tex]\[ V = \pi (8 \, \text{cm})^2 \times 6 \, \text{cm} \][/tex]
4. Compute the volume:
- First, calculate the area of the base:
[tex]\[ \pi (8 \, \text{cm})^2 = \pi \times 64 \, \text{cm}^2 \approx 201.06 \, \text{cm}^2 \][/tex]
- Next, multiply the area of the base by the height to get the volume:
[tex]\[ V = 201.06 \, \text{cm}^2 \times 6 \, \text{cm} \approx 1206.37 \, \text{cm}^3 \][/tex]
5. Round the result to the nearest two decimal places:
- The volume of the cylinder is approximately:
[tex]\[ 1206.37 \, \text{cm}^3 \][/tex]
So, the volume of the cylinder with a diameter of 160 mm and height of 6 cm is approximately [tex]\(1206.37 \, \text{cm}^3\)[/tex], rounded to the nearest two decimal places.
1. Convert the diameter to centimeters:
- Given diameter = 160 mm.
- Since 1 cm = 10 mm, we convert the diameter from mm to cm:
[tex]\[ \text{Diameter (cm)} = 160 \, \text{mm} \times \frac{1 \, \text{cm}}{10 \, \text{mm}} = 16 \, \text{cm} \][/tex]
2. Find the radius:
- The radius is half of the diameter.
[tex]\[ \text{Radius (cm)} = \frac{\text{Diameter (cm)}}{2} = \frac{16 \, \text{cm}}{2} = 8 \, \text{cm} \][/tex]
3. Calculate the volume of the cylinder:
- The formula for the volume [tex]\(V\)[/tex] of a cylinder is given by:
[tex]\[ V = \pi r^2 h \][/tex]
where:
- [tex]\(r\)[/tex] is the radius
- [tex]\(h\)[/tex] is the height
- We substitute the radius [tex]\(r = 8 \, \text{cm}\)[/tex] and the height [tex]\(h = 6 \, \text{cm}\)[/tex] into the formula:
[tex]\[ V = \pi (8 \, \text{cm})^2 \times 6 \, \text{cm} \][/tex]
4. Compute the volume:
- First, calculate the area of the base:
[tex]\[ \pi (8 \, \text{cm})^2 = \pi \times 64 \, \text{cm}^2 \approx 201.06 \, \text{cm}^2 \][/tex]
- Next, multiply the area of the base by the height to get the volume:
[tex]\[ V = 201.06 \, \text{cm}^2 \times 6 \, \text{cm} \approx 1206.37 \, \text{cm}^3 \][/tex]
5. Round the result to the nearest two decimal places:
- The volume of the cylinder is approximately:
[tex]\[ 1206.37 \, \text{cm}^3 \][/tex]
So, the volume of the cylinder with a diameter of 160 mm and height of 6 cm is approximately [tex]\(1206.37 \, \text{cm}^3\)[/tex], rounded to the nearest two decimal places.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.