Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which way the parabola described by the equation [tex]\( y = ax^2 \)[/tex] opens when the coefficient [tex]\( a \)[/tex] is negative, let's analyze the general form of a quadratic equation and the properties of parabolas.
1. Understanding the Equation: The given equation is [tex]\( y = ax^2 \)[/tex], where [tex]\( y \)[/tex] is expressed in terms of [tex]\( x \)[/tex], and [tex]\( a \)[/tex] is a constant coefficient.
2. Coefficient [tex]\( a \)[/tex]: The value of [tex]\( a \)[/tex] determines the direction in which the parabola opens:
- If [tex]\( a > 0 \)[/tex], the parabola opens upwards.
- If [tex]\( a < 0 \)[/tex], the parabola opens downwards.
3. Given Condition: The problem states that the coefficient [tex]\( a \)[/tex] is negative.
4. Analysis of the Parabola's Direction:
- When [tex]\( a \)[/tex] is negative (i.e., [tex]\( a < 0 \)[/tex]), the parabola opens downwards. This is because the quadratic term [tex]\( ax^2 \)[/tex] will dominate the function, and since [tex]\( a \)[/tex] is negative, the value of [tex]\( y \)[/tex] will decrease as [tex]\( |x| \)[/tex] increases, creating a "downward" shape for the parabola.
5. Conclusion: Based on the analysis, when [tex]\( a \)[/tex] is negative, the parabola described by the equation [tex]\( y = ax^2 \)[/tex] opens downwards.
Therefore, the correct answer is:
○ C. Down
1. Understanding the Equation: The given equation is [tex]\( y = ax^2 \)[/tex], where [tex]\( y \)[/tex] is expressed in terms of [tex]\( x \)[/tex], and [tex]\( a \)[/tex] is a constant coefficient.
2. Coefficient [tex]\( a \)[/tex]: The value of [tex]\( a \)[/tex] determines the direction in which the parabola opens:
- If [tex]\( a > 0 \)[/tex], the parabola opens upwards.
- If [tex]\( a < 0 \)[/tex], the parabola opens downwards.
3. Given Condition: The problem states that the coefficient [tex]\( a \)[/tex] is negative.
4. Analysis of the Parabola's Direction:
- When [tex]\( a \)[/tex] is negative (i.e., [tex]\( a < 0 \)[/tex]), the parabola opens downwards. This is because the quadratic term [tex]\( ax^2 \)[/tex] will dominate the function, and since [tex]\( a \)[/tex] is negative, the value of [tex]\( y \)[/tex] will decrease as [tex]\( |x| \)[/tex] increases, creating a "downward" shape for the parabola.
5. Conclusion: Based on the analysis, when [tex]\( a \)[/tex] is negative, the parabola described by the equation [tex]\( y = ax^2 \)[/tex] opens downwards.
Therefore, the correct answer is:
○ C. Down
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.