Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

The equation below describes a parabola. If a is negative, which way does the
parabola open?
y= ax²
○ A. Left
○ B. Up
○ C. Down
О
D. Right

Sagot :

To determine which way the parabola described by the equation [tex]\( y = ax^2 \)[/tex] opens when the coefficient [tex]\( a \)[/tex] is negative, let's analyze the general form of a quadratic equation and the properties of parabolas.

1. Understanding the Equation: The given equation is [tex]\( y = ax^2 \)[/tex], where [tex]\( y \)[/tex] is expressed in terms of [tex]\( x \)[/tex], and [tex]\( a \)[/tex] is a constant coefficient.

2. Coefficient [tex]\( a \)[/tex]: The value of [tex]\( a \)[/tex] determines the direction in which the parabola opens:
- If [tex]\( a > 0 \)[/tex], the parabola opens upwards.
- If [tex]\( a < 0 \)[/tex], the parabola opens downwards.

3. Given Condition: The problem states that the coefficient [tex]\( a \)[/tex] is negative.

4. Analysis of the Parabola's Direction:
- When [tex]\( a \)[/tex] is negative (i.e., [tex]\( a < 0 \)[/tex]), the parabola opens downwards. This is because the quadratic term [tex]\( ax^2 \)[/tex] will dominate the function, and since [tex]\( a \)[/tex] is negative, the value of [tex]\( y \)[/tex] will decrease as [tex]\( |x| \)[/tex] increases, creating a "downward" shape for the parabola.

5. Conclusion: Based on the analysis, when [tex]\( a \)[/tex] is negative, the parabola described by the equation [tex]\( y = ax^2 \)[/tex] opens downwards.

Therefore, the correct answer is:
○ C. Down