Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

The graph of a function F(x) has a slope of 2x^3 - 4 at each point (x,y), and contains the point (2,1). Determine the function F(x).

Sagot :

Final answer:

F(x) = (1/2)x⁴ - 4x + 1

Explanation:

To answer this question, we need to find the function 'F(x)' whose derivative is given by '2x³ - 4' and which passes through the point (2,1). The slope provided gives us the derivative of F(x):

F'(x) = 2x³ - 4

To find F(x), we need to integrate the derivative:

∫F'(x) = ∫(2x³ - 4) dx

F(x) = ∫(2x³) dx - ∫(4) dx

⇒ F(x) = (2/4)x⁴ dx - 4x + C

So, the function is:

F(x) = (1/2)x⁴ - 4x + C

We know the function passes through the point (2,1). Plugging in x = 2 and F(x) = 1:

⇒ 1 = (1/2)(2)⁴ - 4(2) + C

⇒ 1 = (1/2)(16) - 8 + C

⇒ 1 = 8 - 8 + C

⇒ 1 = C

C = 1

Therefore, the constant 'C' is 1, and the function is:

F(x) = (1/2)x4 - 4x + 1

Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.