Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve for the other number when the product of two rational numbers is [tex]\(-\frac{2}{3}\)[/tex] and one of the numbers is [tex]\(\frac{3}{7}\)[/tex], follow these steps:
1. Understand the Problem:
- We have two rational numbers, let's call them [tex]\( \text{num1} \)[/tex] and [tex]\( \text{num2} \)[/tex].
- Their product is given: [tex]\(\text{num1} \times \text{num2} = -\frac{2}{3}\)[/tex].
- One of these numbers, [tex]\(\text{num1}\)[/tex], is known: [tex]\(\text{num1} = \frac{3}{7}\)[/tex].
2. Set up the Equation:
- Substitute the known value of [tex]\(\text{num1}\)[/tex] into the product equation:
[tex]\[ \frac{3}{7} \times \text{num2} = -\frac{2}{3} \][/tex]
3. Solve for the Unknown Number ([tex]\(\text{num2}\)[/tex]):
- To isolate [tex]\(\text{num2}\)[/tex], you need to divide both sides of the equation by [tex]\(\frac{3}{7}\)[/tex]. Dividing by a fraction is the same as multiplying by its reciprocal:
[tex]\[ \text{num2} = \left(-\frac{2}{3}\right) \div \left(\frac{3}{7}\right) = \left(-\frac{2}{3}\right) \times \left(\frac{7}{3}\right) \][/tex]
4. Perform the Multiplication:
- Multiply the numerators together and the denominators together:
[tex]\[ \text{num2} = \frac{-2 \times 7}{3 \times 3} = \frac{-14}{9} \][/tex]
5. Simplify the Fraction:
- The fraction [tex]\(\frac{-14}{9}\)[/tex] is already in its simplest form.
Therefore, the other number is:
[tex]\[ \text{num2} = -\frac{14}{9} \][/tex]
Let's also summarize the values given:
- The product, [tex]\(\text{product} = -\frac{2}{3}\)[/tex].
- The known number, [tex]\(\text{num1} = \frac{3}{7}\)[/tex].
- The other number, [tex]\(\text{num2} = -\frac{14}{9}\)[/tex].
In decimal form, these values are approximately:
- [tex]\(\text{product} \approx -0.6666666666666666\)[/tex].
- [tex]\(\text{num1} \approx 0.42857142857142855\)[/tex].
- [tex]\(\text{num2} \approx -1.5555555555555556\)[/tex].
1. Understand the Problem:
- We have two rational numbers, let's call them [tex]\( \text{num1} \)[/tex] and [tex]\( \text{num2} \)[/tex].
- Their product is given: [tex]\(\text{num1} \times \text{num2} = -\frac{2}{3}\)[/tex].
- One of these numbers, [tex]\(\text{num1}\)[/tex], is known: [tex]\(\text{num1} = \frac{3}{7}\)[/tex].
2. Set up the Equation:
- Substitute the known value of [tex]\(\text{num1}\)[/tex] into the product equation:
[tex]\[ \frac{3}{7} \times \text{num2} = -\frac{2}{3} \][/tex]
3. Solve for the Unknown Number ([tex]\(\text{num2}\)[/tex]):
- To isolate [tex]\(\text{num2}\)[/tex], you need to divide both sides of the equation by [tex]\(\frac{3}{7}\)[/tex]. Dividing by a fraction is the same as multiplying by its reciprocal:
[tex]\[ \text{num2} = \left(-\frac{2}{3}\right) \div \left(\frac{3}{7}\right) = \left(-\frac{2}{3}\right) \times \left(\frac{7}{3}\right) \][/tex]
4. Perform the Multiplication:
- Multiply the numerators together and the denominators together:
[tex]\[ \text{num2} = \frac{-2 \times 7}{3 \times 3} = \frac{-14}{9} \][/tex]
5. Simplify the Fraction:
- The fraction [tex]\(\frac{-14}{9}\)[/tex] is already in its simplest form.
Therefore, the other number is:
[tex]\[ \text{num2} = -\frac{14}{9} \][/tex]
Let's also summarize the values given:
- The product, [tex]\(\text{product} = -\frac{2}{3}\)[/tex].
- The known number, [tex]\(\text{num1} = \frac{3}{7}\)[/tex].
- The other number, [tex]\(\text{num2} = -\frac{14}{9}\)[/tex].
In decimal form, these values are approximately:
- [tex]\(\text{product} \approx -0.6666666666666666\)[/tex].
- [tex]\(\text{num1} \approx 0.42857142857142855\)[/tex].
- [tex]\(\text{num2} \approx -1.5555555555555556\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.