Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the angular displacement of a figure skater who starts from rest and accelerates with a constant acceleration of 100 °/s² over a time period of 1 second, we can use the kinematic equation for rotational motion:
[tex]\[ \theta = \omega_0 t + \frac{1}{2} \alpha t^2 \][/tex]
where:
- [tex]\(\theta\)[/tex] is the angular displacement.
- [tex]\(\omega_0\)[/tex] is the initial angular velocity.
- [tex]\(\alpha\)[/tex] is the angular acceleration.
- [tex]\(t\)[/tex] is the time.
Given the problem parameters:
- The skater starts from rest, so the initial angular velocity [tex]\(\omega_0\)[/tex] is 0 °/s.
- The angular acceleration [tex]\(\alpha\)[/tex] is 100 °/s².
- The time [tex]\(t\)[/tex] is 1 second.
Plugging in these values:
[tex]\[ \theta = 0 \cdot 1 + \frac{1}{2} \cdot 100 \cdot 1^2 \][/tex]
[tex]\[ \theta = 0 + \frac{1}{2} \cdot 100 \cdot 1 \][/tex]
[tex]\[ \theta = \frac{100}{2} \][/tex]
[tex]\[ \theta = 50 \text{ degrees} \][/tex]
Thus, the angular displacement over 1 second is [tex]\(50^\circ\)[/tex].
Therefore, the correct answer is:
50°
[tex]\[ \theta = \omega_0 t + \frac{1}{2} \alpha t^2 \][/tex]
where:
- [tex]\(\theta\)[/tex] is the angular displacement.
- [tex]\(\omega_0\)[/tex] is the initial angular velocity.
- [tex]\(\alpha\)[/tex] is the angular acceleration.
- [tex]\(t\)[/tex] is the time.
Given the problem parameters:
- The skater starts from rest, so the initial angular velocity [tex]\(\omega_0\)[/tex] is 0 °/s.
- The angular acceleration [tex]\(\alpha\)[/tex] is 100 °/s².
- The time [tex]\(t\)[/tex] is 1 second.
Plugging in these values:
[tex]\[ \theta = 0 \cdot 1 + \frac{1}{2} \cdot 100 \cdot 1^2 \][/tex]
[tex]\[ \theta = 0 + \frac{1}{2} \cdot 100 \cdot 1 \][/tex]
[tex]\[ \theta = \frac{100}{2} \][/tex]
[tex]\[ \theta = 50 \text{ degrees} \][/tex]
Thus, the angular displacement over 1 second is [tex]\(50^\circ\)[/tex].
Therefore, the correct answer is:
50°
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.