Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the slant height of a right square pyramid with an altitude of 10 and each side of the base being 6, follow these steps:
1. Calculate the half-length of the base diagonal:
- The base of the pyramid is a square with each side of length 6.
- For a square, the length of the diagonal can be found using the Pythagorean theorem.
- The diagonal [tex]\(d\)[/tex] of the square is given by [tex]\(d = \sqrt{6^2 + 6^2}\)[/tex].
- Simplifying, [tex]\(d = \sqrt{36 + 36} = \sqrt{72} \approx 8.485\)[/tex].
- Half of this diagonal is [tex]\(\frac{8.485}{2} \approx 4.242\)[/tex].
2. Find the slant height of the pyramid:
- The slant height forms the hypotenuse of a right triangle where the altitude of the pyramid (10) and half the base diagonal (4.242) are the legs.
- Use the Pythagorean theorem to find the slant height [tex]\(s\)[/tex]:
[tex]\[ s = \sqrt{10^2 + 4.242^2} \][/tex]
- Simplifying, [tex]\( s = \sqrt{100 + 18} \approx \sqrt{118} \approx 10.9 \)[/tex].
Thus, the slant height of the pyramid, to the nearest tenth, is:
[tex]\[ \boxed{10.9} \][/tex]
1. Calculate the half-length of the base diagonal:
- The base of the pyramid is a square with each side of length 6.
- For a square, the length of the diagonal can be found using the Pythagorean theorem.
- The diagonal [tex]\(d\)[/tex] of the square is given by [tex]\(d = \sqrt{6^2 + 6^2}\)[/tex].
- Simplifying, [tex]\(d = \sqrt{36 + 36} = \sqrt{72} \approx 8.485\)[/tex].
- Half of this diagonal is [tex]\(\frac{8.485}{2} \approx 4.242\)[/tex].
2. Find the slant height of the pyramid:
- The slant height forms the hypotenuse of a right triangle where the altitude of the pyramid (10) and half the base diagonal (4.242) are the legs.
- Use the Pythagorean theorem to find the slant height [tex]\(s\)[/tex]:
[tex]\[ s = \sqrt{10^2 + 4.242^2} \][/tex]
- Simplifying, [tex]\( s = \sqrt{100 + 18} \approx \sqrt{118} \approx 10.9 \)[/tex].
Thus, the slant height of the pyramid, to the nearest tenth, is:
[tex]\[ \boxed{10.9} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.