Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which reflection will produce an image at the same coordinates [tex]\((0, k)\)[/tex], let's analyze each option carefully:
1. Reflection across the x-axis:
- For any point [tex]\((x, y)\)[/tex], reflecting it across the x-axis results in the new point [tex]\((x, -y)\)[/tex].
- For the point [tex]\((0, k)\)[/tex], reflection across the x-axis yields [tex]\((0, -k)\)[/tex].
2. Reflection across the y-axis:
- For any point [tex]\((x, y)\)[/tex], reflecting it across the y-axis results in the new point [tex]\((-x, y)\)[/tex].
- For the point [tex]\((0, k)\)[/tex], reflection across the y-axis yields [tex]\((0, k)\)[/tex].
3. Reflection across the line [tex]\(y = x\)[/tex]:
- For any point [tex]\((x, y)\)[/tex], reflecting it across the line [tex]\(y = x\)[/tex] results in the new point [tex]\((y, x)\)[/tex].
- For the point [tex]\((0, k)\)[/tex], reflection across the line [tex]\(y = x\)[/tex] yields [tex]\((k, 0)\)[/tex].
4. Reflection across the line [tex]\(y = -x\)[/tex]:
- For any point [tex]\((x, y)\)[/tex], reflecting it across the line [tex]\(y = -x\)[/tex] results in the new point [tex]\((-y, -x)\)[/tex].
- For the point [tex]\((0, k)\)[/tex], reflection across the line [tex]\(y = -x\)[/tex] yields [tex]\((-k, 0)\)[/tex].
Of all these transformations, only the reflection across the y-axis results in the point retaining its original coordinates [tex]\((0, k)\)[/tex].
Therefore, the correct answer is:
- a reflection of the point across the y-axis
1. Reflection across the x-axis:
- For any point [tex]\((x, y)\)[/tex], reflecting it across the x-axis results in the new point [tex]\((x, -y)\)[/tex].
- For the point [tex]\((0, k)\)[/tex], reflection across the x-axis yields [tex]\((0, -k)\)[/tex].
2. Reflection across the y-axis:
- For any point [tex]\((x, y)\)[/tex], reflecting it across the y-axis results in the new point [tex]\((-x, y)\)[/tex].
- For the point [tex]\((0, k)\)[/tex], reflection across the y-axis yields [tex]\((0, k)\)[/tex].
3. Reflection across the line [tex]\(y = x\)[/tex]:
- For any point [tex]\((x, y)\)[/tex], reflecting it across the line [tex]\(y = x\)[/tex] results in the new point [tex]\((y, x)\)[/tex].
- For the point [tex]\((0, k)\)[/tex], reflection across the line [tex]\(y = x\)[/tex] yields [tex]\((k, 0)\)[/tex].
4. Reflection across the line [tex]\(y = -x\)[/tex]:
- For any point [tex]\((x, y)\)[/tex], reflecting it across the line [tex]\(y = -x\)[/tex] results in the new point [tex]\((-y, -x)\)[/tex].
- For the point [tex]\((0, k)\)[/tex], reflection across the line [tex]\(y = -x\)[/tex] yields [tex]\((-k, 0)\)[/tex].
Of all these transformations, only the reflection across the y-axis results in the point retaining its original coordinates [tex]\((0, k)\)[/tex].
Therefore, the correct answer is:
- a reflection of the point across the y-axis
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.