Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the number of molecules of glucose present in 1.8 grams of glucose, we need to follow a sequence of steps involving the molar mass of glucose and Avogadro's number.
### Step-by-Step Solution
Step 1: Determine the molar mass of glucose (C6H12O6).
The molar mass of glucose can be calculated by summing the atomic masses of all the atoms in a glucose molecule:
- Carbon (C): 6 atoms, atomic mass = 12.01 g/mol
- Hydrogen (H): 12 atoms, atomic mass = 1.008 g/mol
- Oxygen (O): 6 atoms, atomic mass = 16.00 g/mol
[tex]\[ \text{Molar mass of glucose} = (6 \times 12.01) + (12 \times 1.008) + (6 \times 16.00) \text{ g/mol} = 180.16 \text{ g/mol} \][/tex]
Step 2: Calculate the number of moles of glucose.
The number of moles ([tex]\( n \)[/tex]) is given by the formula:
[tex]\[ n = \frac{\text{mass}}{\text{molar mass}} \][/tex]
Given:
- Mass of glucose = 1.8 g
- Molar mass of glucose = 180.16 g/mol
[tex]\[ n = \frac{1.8 \text{ g}}{180.16 \text{ g/mol}} \approx 0.00999112 \text{ mol} \][/tex]
Step 3: Use Avogadro's number to find the number of molecules.
Avogadro's number is [tex]\( 6.022 \times 10^{23} \)[/tex] molecules/mol. To find the number of molecules, multiply the number of moles by Avogadro's number:
[tex]\[ \text{Number of molecules} = \text{number of moles} \times \text{Avogadro's number} \][/tex]
[tex]\[ \text{Number of molecules} = 0.00999112 \text{ mol} \times 6.022 \times 10^{23} \text{ molecules/mol} \approx 6.01665 \times 10^{21} \text{ molecules} \][/tex]
### Conclusion
Thus, the number of molecules of glucose present in 1.8 grams of glucose is approximately [tex]\( 6.01665 \times 10^{21} \)[/tex] molecules.
### Step-by-Step Solution
Step 1: Determine the molar mass of glucose (C6H12O6).
The molar mass of glucose can be calculated by summing the atomic masses of all the atoms in a glucose molecule:
- Carbon (C): 6 atoms, atomic mass = 12.01 g/mol
- Hydrogen (H): 12 atoms, atomic mass = 1.008 g/mol
- Oxygen (O): 6 atoms, atomic mass = 16.00 g/mol
[tex]\[ \text{Molar mass of glucose} = (6 \times 12.01) + (12 \times 1.008) + (6 \times 16.00) \text{ g/mol} = 180.16 \text{ g/mol} \][/tex]
Step 2: Calculate the number of moles of glucose.
The number of moles ([tex]\( n \)[/tex]) is given by the formula:
[tex]\[ n = \frac{\text{mass}}{\text{molar mass}} \][/tex]
Given:
- Mass of glucose = 1.8 g
- Molar mass of glucose = 180.16 g/mol
[tex]\[ n = \frac{1.8 \text{ g}}{180.16 \text{ g/mol}} \approx 0.00999112 \text{ mol} \][/tex]
Step 3: Use Avogadro's number to find the number of molecules.
Avogadro's number is [tex]\( 6.022 \times 10^{23} \)[/tex] molecules/mol. To find the number of molecules, multiply the number of moles by Avogadro's number:
[tex]\[ \text{Number of molecules} = \text{number of moles} \times \text{Avogadro's number} \][/tex]
[tex]\[ \text{Number of molecules} = 0.00999112 \text{ mol} \times 6.022 \times 10^{23} \text{ molecules/mol} \approx 6.01665 \times 10^{21} \text{ molecules} \][/tex]
### Conclusion
Thus, the number of molecules of glucose present in 1.8 grams of glucose is approximately [tex]\( 6.01665 \times 10^{21} \)[/tex] molecules.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.