Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's start by detailing the steps to find the cross-sectional area of the tank.
1. Understand the given information:
- The volume of the tank is 2.4 cubic meters (m³).
- The height of the tank is 80 centimeters (cm).
2. Convert the height from centimeters to meters:
Since 1 meter (m) is equivalent to 100 centimeters (cm), we can convert the height by dividing by 100.
[tex]\[ \text{Height (in meters)} = \frac{\text{Height (in centimeters)}}{100} = \frac{80 \, \text{cm}}{100} = 0.8 \, \text{m} \][/tex]
3. Calculate the cross-sectional area:
Recall the formula for the volume of a rectangular tank:
[tex]\[ \text{Volume} = \text{Cross-sectional area} \times \text{Height} \][/tex]
This formula can be rearranged to solve for the cross-sectional area:
[tex]\[ \text{Cross-sectional area} = \frac{\text{Volume}}{\text{Height}} \][/tex]
Substituting the known values:
[tex]\[ \text{Cross-sectional area} = \frac{2.4 \, \text{m}^3}{0.8 \, \text{m}} = 3 \, \text{m}^2 \][/tex]
Hence, the cross-sectional area of the tank is approximately [tex]\( 3 \, \text{m}^2 \)[/tex].
1. Understand the given information:
- The volume of the tank is 2.4 cubic meters (m³).
- The height of the tank is 80 centimeters (cm).
2. Convert the height from centimeters to meters:
Since 1 meter (m) is equivalent to 100 centimeters (cm), we can convert the height by dividing by 100.
[tex]\[ \text{Height (in meters)} = \frac{\text{Height (in centimeters)}}{100} = \frac{80 \, \text{cm}}{100} = 0.8 \, \text{m} \][/tex]
3. Calculate the cross-sectional area:
Recall the formula for the volume of a rectangular tank:
[tex]\[ \text{Volume} = \text{Cross-sectional area} \times \text{Height} \][/tex]
This formula can be rearranged to solve for the cross-sectional area:
[tex]\[ \text{Cross-sectional area} = \frac{\text{Volume}}{\text{Height}} \][/tex]
Substituting the known values:
[tex]\[ \text{Cross-sectional area} = \frac{2.4 \, \text{m}^3}{0.8 \, \text{m}} = 3 \, \text{m}^2 \][/tex]
Hence, the cross-sectional area of the tank is approximately [tex]\( 3 \, \text{m}^2 \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.