Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine whether [tex]\( f(x) \)[/tex] is a function, we need to verify whether each input (or [tex]\( x \)[/tex]-value) maps to exactly one output (or [tex]\( y \)[/tex]-value). This can be tested using the vertical line test.
Vertical Line Test: A graphical method to determine if a relation is a function. According to this test, if a vertical line drawn anywhere on the graph intersects the graph at more than one point, the relation is not a function.
To check [tex]\( f(x) \)[/tex]:
1. Analyze the relationship visually: Imagine drawing vertical lines across the graph of [tex]\( f(x) \)[/tex].
2. Vertical Line Intersection: Look to see if any vertical line intersects the graph at more than one point.
If any vertical line intersects the graph at more than one point, then the relation is not a function. If no vertical line intersects the graph at more than one point, then the relation is indeed a function.
Given the context and analysis:
The plot of [tex]\( f(x) \)[/tex] does not violate the vertical line test. Hence, it can be concluded that [tex]\( f(x) \)[/tex] is a function.
Therefore, the answer is:
A. True
Vertical Line Test: A graphical method to determine if a relation is a function. According to this test, if a vertical line drawn anywhere on the graph intersects the graph at more than one point, the relation is not a function.
To check [tex]\( f(x) \)[/tex]:
1. Analyze the relationship visually: Imagine drawing vertical lines across the graph of [tex]\( f(x) \)[/tex].
2. Vertical Line Intersection: Look to see if any vertical line intersects the graph at more than one point.
If any vertical line intersects the graph at more than one point, then the relation is not a function. If no vertical line intersects the graph at more than one point, then the relation is indeed a function.
Given the context and analysis:
The plot of [tex]\( f(x) \)[/tex] does not violate the vertical line test. Hence, it can be concluded that [tex]\( f(x) \)[/tex] is a function.
Therefore, the answer is:
A. True
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.