Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Given the initial ratio of cats to dogs is 2:5 and there are 10 cats, we can find the number of dogs:
\[
\text{Let } C \text{ be the number of cats and } D \text{ be the number of dogs.}
\]
\[
C = 10 \text{ cats}
\]
Since the ratio of cats to dogs is 2:5, we can set up the following proportion:
\[
\frac{C}{D} = \frac{2}{5}
\]
Substituting \( C = 10 \):
\[
\frac{10}{D} = \frac{2}{5}
\]
Cross-multiplying to solve for \( D \):
\[
10 \times 5 = 2 \times D \implies 50 = 2D \implies D = \frac{50}{2} = 25
\]
So, initially, there are 10 cats and 25 dogs.
After a group of animals arrives, the new ratio of cats to dogs becomes 5:3. Let the number of new cats be \( x \) and the number of new dogs be \( y \). The new number of cats and dogs are:
\[
10 + x \text{ cats and } 25 + y \text{ dogs}
\]
According to the new ratio:
\[
\frac{10 + x}{25 + y} = \frac{5}{3}
\]
Cross-multiplying to solve for \( x \) and \( y \):
\[
3(10 + x) = 5
\[
\text{Let } C \text{ be the number of cats and } D \text{ be the number of dogs.}
\]
\[
C = 10 \text{ cats}
\]
Since the ratio of cats to dogs is 2:5, we can set up the following proportion:
\[
\frac{C}{D} = \frac{2}{5}
\]
Substituting \( C = 10 \):
\[
\frac{10}{D} = \frac{2}{5}
\]
Cross-multiplying to solve for \( D \):
\[
10 \times 5 = 2 \times D \implies 50 = 2D \implies D = \frac{50}{2} = 25
\]
So, initially, there are 10 cats and 25 dogs.
After a group of animals arrives, the new ratio of cats to dogs becomes 5:3. Let the number of new cats be \( x \) and the number of new dogs be \( y \). The new number of cats and dogs are:
\[
10 + x \text{ cats and } 25 + y \text{ dogs}
\]
According to the new ratio:
\[
\frac{10 + x}{25 + y} = \frac{5}{3}
\]
Cross-multiplying to solve for \( x \) and \( y \):
\[
3(10 + x) = 5
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.