Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Consider a circle of radius 2. A circle is cut out of it so that the area of this
smaller circle is 12 times the area of the remaining part. What is the radius of
this circle?
A: 2√(12/13)
B: 2(12/13)
C: 2√(12/11)
D: 2√12
E: 2(12/13)


Sagot :

Answer:

A: 2√(12/13)

Step-by-step explanation:

Let R be the radius of the larger circle.

Let r be the radius of the smaller circle.

The area of the larger circle with radius R = 2 is:

[tex]A_{\sf large\;circle}=\pi \cdot R^2 \\\\ A_{\sf large\;circle}=\pi \cdot 2^2 \\\\ A_{\sf large\;circle}=4\pi[/tex]

The area of the smaller circle with radius r is:

[tex]A_{\sf small\;circle}=\pi r^2[/tex]

When the smaller circle is cut out of the larger circle, the remaining area can be expressed as:

[tex]A_{\sf remaining}=A_{\sf large\;circle} -A_{\sf small\;circle} \\\\A_{\sf remaining}=4\pi -\pi r^2[/tex]

Given that the area of the smaller circle is 12 times the area of the remaining part, then:

[tex]A_{\sf small\;circle}=12 \cdot A_{\sf remaining} \\\\\pi r^2 = 12 \cdot (4\pi -\pi r^2)[/tex]

Solve for the radius of the smaller circle (r):

[tex]\pi r^2 = 12 \cdot (4\pi -\pi r^2) \\\\ \pi r^2 =48\pi -12\pi r^2 \\\\ \pi r^2 =\pi (48-12 r^2) \\\\ r^2=48-12r^2 \\\\r^2+12r^2=48\\\\13r^2=48\\\\r^2=\dfrac{48}{13}\\\\\\r=\sqrt{\dfrac{48}{13}}\\\\\\r=\sqrt{4\cdot \dfrac{12}{13}}\\\\\\r=\sqrt{4}\sqrt{\dfrac{12}{13}}\\\\\\r=2\sqrt{\dfrac{12}{13}}[/tex]

Therefore, the radius of the smaller circle is:

[tex]\Large\boxed{\boxed{2\sqrt{\dfrac{12}{13}}}}[/tex]