Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's solve the problem step by step, considering the half-life property of the substance.
### Key Concepts:
1. Half-Life: The time required for a quantity to reduce to half its initial value.
2. Exponential Decay Formula:
[tex]\[ \text{Remaining Amount} = \text{Initial Amount} \times \left(\frac{1}{2}\right)^{\frac{\text{time}}{\text{half-life}}} \][/tex]
### Given Data:
1. Initial weight of bromine sample, [tex]\( \text{Initial Amount} = 20 \)[/tex] mg.
2. Half-life of bromine, [tex]\( \text{half-life} = 57 \)[/tex] hours.
We need to find out how much of the sample will remain after various time intervals.
### Time Interval 1: After 57 hours
- Using the exponential decay formula:
[tex]\[ \text{Remaining Amount} = 20 \times \left(\frac{1}{2}\right)^{\frac{57}{57}} = 20 \times \left(\frac{1}{2}\right)^{1} = 20 \times 0.5 = 10 \text{ mg} \][/tex]
So, after 57 hours, 10 mg of the sample will remain.
### Time Interval 2: After 28.5 hours
- Using the exponential decay formula:
[tex]\[ \text{Remaining Amount} = 20 \times \left(\frac{1}{2}\right)^{\frac{28.5}{57}} = 20 \times \left(\frac{1}{2}\right)^{0.5} \][/tex]
We know that:
[tex]\[ \left(\frac{1}{2}\right)^{0.5} = \frac{1}{\sqrt{2}} \approx 0.7071 \][/tex]
So:
[tex]\[ \text{Remaining Amount} = 20 \times 0.7071 \approx 14.14 \text{ mg} \][/tex]
Hence, after 28.5 hours, approximately 14.142 mg of the sample will remain.
### Time Interval 3: After 1 hour
- Using the exponential decay formula:
[tex]\[ \text{Remaining Amount} = 20 \times \left(\frac{1}{2}\right)^{\frac{1}{57}} \][/tex]
Approximate calculation gives:
[tex]\[ \left(\frac{1}{2}\right)^{\frac{1}{57}} \approx 0.9878 \][/tex]
So:
[tex]\[ \text{Remaining Amount} = 20 \times 0.9878 \approx 19.76 \text{ mg} \][/tex]
After 1 hour, approximately 19.758 mg of the sample will remain.
### Summary
- After 57 hours: 10 mg
- After 28.5 hours: Approximately 14.142 mg
- After 1 hour: Approximately 19.758 mg
These calculations demonstrate how the weight of the bromine sample decreases over time given its half-life.
### Key Concepts:
1. Half-Life: The time required for a quantity to reduce to half its initial value.
2. Exponential Decay Formula:
[tex]\[ \text{Remaining Amount} = \text{Initial Amount} \times \left(\frac{1}{2}\right)^{\frac{\text{time}}{\text{half-life}}} \][/tex]
### Given Data:
1. Initial weight of bromine sample, [tex]\( \text{Initial Amount} = 20 \)[/tex] mg.
2. Half-life of bromine, [tex]\( \text{half-life} = 57 \)[/tex] hours.
We need to find out how much of the sample will remain after various time intervals.
### Time Interval 1: After 57 hours
- Using the exponential decay formula:
[tex]\[ \text{Remaining Amount} = 20 \times \left(\frac{1}{2}\right)^{\frac{57}{57}} = 20 \times \left(\frac{1}{2}\right)^{1} = 20 \times 0.5 = 10 \text{ mg} \][/tex]
So, after 57 hours, 10 mg of the sample will remain.
### Time Interval 2: After 28.5 hours
- Using the exponential decay formula:
[tex]\[ \text{Remaining Amount} = 20 \times \left(\frac{1}{2}\right)^{\frac{28.5}{57}} = 20 \times \left(\frac{1}{2}\right)^{0.5} \][/tex]
We know that:
[tex]\[ \left(\frac{1}{2}\right)^{0.5} = \frac{1}{\sqrt{2}} \approx 0.7071 \][/tex]
So:
[tex]\[ \text{Remaining Amount} = 20 \times 0.7071 \approx 14.14 \text{ mg} \][/tex]
Hence, after 28.5 hours, approximately 14.142 mg of the sample will remain.
### Time Interval 3: After 1 hour
- Using the exponential decay formula:
[tex]\[ \text{Remaining Amount} = 20 \times \left(\frac{1}{2}\right)^{\frac{1}{57}} \][/tex]
Approximate calculation gives:
[tex]\[ \left(\frac{1}{2}\right)^{\frac{1}{57}} \approx 0.9878 \][/tex]
So:
[tex]\[ \text{Remaining Amount} = 20 \times 0.9878 \approx 19.76 \text{ mg} \][/tex]
After 1 hour, approximately 19.758 mg of the sample will remain.
### Summary
- After 57 hours: 10 mg
- After 28.5 hours: Approximately 14.142 mg
- After 1 hour: Approximately 19.758 mg
These calculations demonstrate how the weight of the bromine sample decreases over time given its half-life.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.