Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Question 26
[3 marks]
Andrew deposited $4 000 into an investment account which pays 1.5% p.a. interest. If
the interest is compounded quarterly, what will the balance of Andrew's account be after
5 years?


Sagot :

To calculate the balance of Andrew's account after 5 years with an annual interest rate of 1.5% compounded quarterly, we can follow these steps:

1. Identify the initial amount (Principal):
- The initial amount deposited (principal) is [tex]$4,000. 2. Determine the annual interest rate: - The annual interest rate is 1.5%, which we convert to a decimal by dividing by 100, i.e., 0.015. 3. Identify the number of times interest is compounded per year: - Interest is compounded quarterly, which means it is compounded 4 times a year. 4. Calculate the interest rate per compounding period: - The interest rate per quarter is the annual interest rate divided by the number of compounding periods per year: \[ \text{Quarterly Interest Rate} = \frac{0.015}{4} = 0.00375 \] 5. Determine the total number of compounding periods: - Over 5 years, if interest is compounded quarterly, the total number of compounding periods is: \[ \text{Total Compounding Periods} = 4 \times 5 = 20 \] 6. Use the compound interest formula to calculate the balance: - The compound interest formula is: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] - \(A\) is the amount of money accumulated after n years, including interest. - \(P\) is the principal amount ($[/tex]4,000).
- [tex]\(r\)[/tex] is the annual interest rate (0.015).
- [tex]\(n\)[/tex] is the number of times that interest is compounded per year (4).
- [tex]\(t\)[/tex] is the time the money is invested for in years (5).

7. Plug in the values:
[tex]\[ A = 4000 \left(1 + 0.00375\right)^{20} \][/tex]
[tex]\[ A = 4000 \left(1.00375\right)^{20} \][/tex]

8. Calculate the final balance:
- The calculated balance after 5 years is approximately [tex]$4310.93. Therefore, the balance of Andrew's account after 5 years will be approximately $[/tex]4310.93.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.