Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

In the given figure, ABX~ABC. Calculate the length of CX. Please somebody solve it​

In The Given Figure ABXABC Calculate The Length Of CX Please Somebody Solve It class=

Sagot :

dufojhpjkooffjhd

udigpvlcl

tslhf

Answer:

CX = 3.2 cm

Step-by-step explanation:

We can find the length of CX by comparing the ΔABX and ΔABC. Refer to the attached picture, we can see that 2 pairs of the corresponding angles are equal (∠CAB = ∠AXB = 90° and ∠CBA = ∠ABX).

Therefore based on the triangle similarity theorem, ΔABX and ΔABC are similar triangles, which means:

[tex]\boxed{AC:XA=AB:XB=BC:BA}[/tex]

Using the Pythagorean theorem for ΔABC:

[tex]BC^2=AB^2+AC^2[/tex]

[tex]BC^2=3^2+4^2[/tex]

[tex]BC=\sqrt{25}[/tex]

[tex]BC=5\ cm[/tex]

[tex]AB:BC=XB:AB[/tex]

[tex]3:5=XB:3[/tex]

[tex]XB=3\times3\div5[/tex]

[tex]XB=1.8\ cm[/tex]

[tex]BC=XB+CX[/tex]

[tex]5=1.8+CX[/tex]

[tex]CX=5-1.8[/tex]

[tex]\bf CX=3.2\ cm[/tex]

View image karmenchong