At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

What is the angle above the x axis (i.e., "north of east") for a vector with components (15 m, 8 m)?
Express your answer in degrees to three significant figures.


Sagot :

To determine the angle above the x-axis, also known as "north of east," for a vector given by its components (15 m east and 8 m north), follow these steps:

1. Understand the Components: The vector has an x-component of 15 meters (east) and a y-component of 8 meters (north).

2. Use the Arctangent Function: The angle θ can be found using the arctangent function (tan^(-1)) of the ratio of the y-component to the x-component. This is because the tangent of the angle θ is equal to the opposite side (y-component) over the adjacent side (x-component).

[tex]\[ \theta = \tan^{-1} \left( \frac{y \text{ component}}{x \text{ component}} \right) \][/tex]

Plugging in the given values:

[tex]\[ \theta = \tan^{-1} \left( \frac{8}{15} \right) \][/tex]

3. Calculate the Angle in Radians: Evaluating this expression gives the angle in radians.

[tex]\[ \theta \approx 0.4899573262537283 \text{ radians} \][/tex]

4. Convert Radians to Degrees: To convert the angle from radians to degrees, use the conversion factor [tex]\(1 \text{ radian} \approx 57.2958 \text{ degrees}\)[/tex].

[tex]\[ \theta \text{ in degrees} = 0.4899573262537283 \text{ radians} \times 57.2958 \text{ degrees/radian} \approx 28.072 \text{ degrees} \][/tex]

5. Round to Three Significant Figures: The final step is to express the angle in degrees to three significant figures.

[tex]\[ \theta \approx 28.072 \text{ degrees} \][/tex]

Therefore, the angle above the x-axis (north of east) for the vector with components (15 m, 8 m) is approximately [tex]\(28.072\)[/tex] degrees.