Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

8 The sides of a parallelogram are 8 cm and
10 cm and the angle between them is 130°.
Use cosine rule to calculate
(a) the diagonals of the parallelogram.
(b) angle DBC.


Sagot :

Let's solve the problem step-by-step:

### Given:
- Side [tex]\( a \)[/tex] = 8 cm
- Side [tex]\( b \)[/tex] = 10 cm
- Angle between the sides, [tex]\(\theta\)[/tex] = 130°

### To calculate:
- (a) The lengths of the diagonals of the parallelogram.
- (b) Angle [tex]\( \angle DBC \)[/tex].

### (a) Calculating the diagonals

In a parallelogram, the diagonals can be calculated using the Cosine Rule.

#### Diagonal [tex]\( d_1 \)[/tex]:

Using the Cosine Rule for the first diagonal [tex]\( d_1 \)[/tex]:

[tex]\[ d_1^2 = a^2 + b^2 - 2ab \cdot \cos(\theta) \][/tex]

Plug in the values:

[tex]\[ d_1^2 = 8^2 + 10^2 - 2 \cdot 8 \cdot 10 \cdot \cos(130°) \][/tex]

Next, we calculate [tex]\( \cos(130°) \)[/tex] which is a constant.

[tex]\[ \cos(130°) \approx -0.6428 \][/tex]

Now substitute this:

[tex]\[ d_1^2 = 64 + 100 - 2 \cdot 8 \cdot 10 \cdot (-0.6428) \][/tex]

[tex]\[ d_1^2 = 164 + 102.848 \][/tex]

[tex]\[ d_1^2 = 266.848 \][/tex]

Taking the square root to find [tex]\( d_1 \)[/tex]:

[tex]\[ d_1 \approx \sqrt{266.848} \][/tex]

[tex]\[ d_1 \approx 16.34 \, \text{cm} \][/tex]

#### Diagonal [tex]\( d_2 \)[/tex]:

Using the Cosine Rule for the second diagonal [tex]\( d_2 \)[/tex], but with a [tex]\(\cos\)[/tex] function that will change signs:

[tex]\[ d_2^2 = a^2 + b^2 + 2ab \cdot \cos(\theta) \][/tex]

Plug in the values:

[tex]\[ d_2^2 = 8^2 + 10^2 + 2 \cdot 8 \cdot 10 \cdot \cos(130°) \][/tex]

[tex]\[ d_2^2 = 64 + 100 + 2 \cdot 8 \cdot 10 \cdot (-0.6428) \][/tex]

[tex]\[ d_2^2 = 164 - 102.848 \][/tex]

[tex]\[ d_2^2 = 61.152 \][/tex]

Taking the square root to find [tex]\( d_2 \)[/tex]:

[tex]\[ d_2 \approx \sqrt{61.152} \][/tex]

[tex]\[ d_2 \approx 7.82 \, \text{cm} \][/tex]

### (b) Calculating angle [tex]\( \angle DBC \)[/tex]:

In a parallelogram, consecutive angles are supplementary. This means that [tex]\( \angle DBC \)[/tex] is the supplementary angle to the given angle [tex]\( 130° \)[/tex].

[tex]\[ \angle DBC = 180° - 130° \][/tex]

[tex]\[ \angle DBC = 50° \][/tex]

### Summary:

(a) The lengths of the diagonals of the parallelogram are:

[tex]\[ d_1 \approx 16.34 \, \text{cm} \][/tex]
[tex]\[ d_2 \approx 7.82 \, \text{cm} \][/tex]

(b) The angle [tex]\( \angle DBC \)[/tex] is:

[tex]\[ \angle DBC = 50° \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.