Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the average velocity of an object moving along a line given by the function [tex]\( s(t) = -172 + 102t \)[/tex] over various intervals, follow these steps:
### Interval [1, 8]
First, calculate the average velocity over the interval [1, 8].
Step 1: Identify the position function [tex]\( s(t) \)[/tex].
[tex]\[ s(t) = -172 + 102t \][/tex]
Step 2: Evaluate the position at the beginning and end of the time interval.
- For [tex]\( t = 1 \)[/tex]:
[tex]\[ s(1) = -172 + 102 \cdot 1 = -172 + 102 = -70 \][/tex]
- For [tex]\( t = 8 \)[/tex]:
[tex]\[ s(8) = -172 + 102 \cdot 8 = -172 + 816 = 644 \][/tex]
Step 3: Compute the change in position [tex]\(\Delta s\)[/tex].
[tex]\[ \Delta s = s(8) - s(1) = 644 - (-70) = 644 + 70 = 714 \][/tex]
Step 4: Compute the change in time [tex]\(\Delta t\)[/tex].
[tex]\[ \Delta t = 8 - 1 = 7 \][/tex]
Step 5: Calculate the average velocity [tex]\(\bar{v}\)[/tex].
[tex]\[ \bar{v} = \frac{\Delta s}{\Delta t} = \frac{714}{7} = 102 \][/tex]
Therefore, the average velocity of the object over the interval [tex]\([1, 8]\)[/tex] is [tex]\( 102 \, \text{units of distance per unit time} \)[/tex].
### Interval [1, 7]
Repeat the steps for the interval [1, 7]:
Step 1: Evaluate the position at [tex]\( t = 1 \)[/tex] and [tex]\( t = 7 \)[/tex].
- For [tex]\( t = 1 \)[/tex]:
[tex]\[ s(1) = -172 + 102 = -70 \][/tex]
- For [tex]\( t = 7 \)[/tex]:
[tex]\[ s(7) = -172 + 714 = 542 \][/tex]
Step 2: Compute [tex]\(\Delta s\)[/tex].
[tex]\[ \Delta s = s(7) - s(1) = 542 - (-70) = 542 + 70 = 612 \][/tex]
Step 3: Compute [tex]\(\Delta t\)[/tex].
[tex]\[ \Delta t = 7 - 1 = 6 \][/tex]
Step 4: Calculate the average velocity.
[tex]\[ \bar{v} = \frac{\Delta s}{\Delta t} = \frac{612}{6} = 102 \][/tex]
Therefore, the average velocity over the interval [tex]\([1, 7]\)[/tex] is [tex]\( 102 \, \text{units of distance per unit time} \)[/tex].
### Interval [1, 6]
Repeat the process for the interval [1, 6]:
Step 1: Evaluate the position at [tex]\( t = 1 \)[/tex] and [tex]\( t = 6 \)[/tex].
- For [tex]\( t = 1 \)[/tex]:
[tex]\[ s(1) = -70 \][/tex]
- For [tex]\( t = 6 \)[/tex]:
[tex]\[ s(6) = -172 + 612 = 440 \][/tex]
Step 2: Compute [tex]\(\Delta s\)[/tex].
[tex]\[ \Delta s = s(6) - s(1) = 440 - (-70) = 440 + 70 = 510 \][/tex]
Step 3: Compute [tex]\(\Delta t\)[/tex].
[tex]\[ \Delta t = 6 - 1 = 5 \][/tex]
Step 4: Calculate the average velocity.
[tex]\[ \bar{v} = \frac{\Delta s}{\Delta t} = \frac{510}{5} = 102 \][/tex]
Therefore, the average velocity over the interval [tex]\([1, 6]\)[/tex] is [tex]\( 102 \, \text{units of distance per unit time} \)[/tex].
### Interval [1, 1+h], where [tex]\( h > 0 \)[/tex]
For the general interval [tex]\([1, 1 + h]\)[/tex]:
Step 1: Evaluate the position at [tex]\( t = 1 \)[/tex] and [tex]\( t = 1 + h \)[/tex].
- For [tex]\( t = 1 \)[/tex]:
[tex]\[ s(1) = -70 \][/tex]
- For [tex]\( t = 1 + h \)[/tex]:
[tex]\[ s(1 + h) = -172 + 102(1 + h) = -172 + 102 + 102h = -70 + 102h \][/tex]
Step 2: Compute [tex]\(\Delta s\)[/tex].
[tex]\[ \Delta s = s(1 + h) - s(1) = (-70 + 102h) - (-70) = 102h \][/tex]
Step 3: Compute [tex]\(\Delta t\)[/tex].
[tex]\[ \Delta t = (1 + h) - 1 = h \][/tex]
Step 4: Calculate the average velocity.
[tex]\[ \bar{v} = \frac{\Delta s}{\Delta t} = \frac{102h}{h} = 102 \][/tex]
Therefore, the average velocity over the interval [tex]\([1, 1 + h]\)[/tex] is [tex]\( 102 \, \text{units of distance per unit time} \)[/tex].
In summary, for all given intervals, the average velocity of the object is [tex]\( 102 \, \text{units of distance per unit time} \)[/tex].
### Interval [1, 8]
First, calculate the average velocity over the interval [1, 8].
Step 1: Identify the position function [tex]\( s(t) \)[/tex].
[tex]\[ s(t) = -172 + 102t \][/tex]
Step 2: Evaluate the position at the beginning and end of the time interval.
- For [tex]\( t = 1 \)[/tex]:
[tex]\[ s(1) = -172 + 102 \cdot 1 = -172 + 102 = -70 \][/tex]
- For [tex]\( t = 8 \)[/tex]:
[tex]\[ s(8) = -172 + 102 \cdot 8 = -172 + 816 = 644 \][/tex]
Step 3: Compute the change in position [tex]\(\Delta s\)[/tex].
[tex]\[ \Delta s = s(8) - s(1) = 644 - (-70) = 644 + 70 = 714 \][/tex]
Step 4: Compute the change in time [tex]\(\Delta t\)[/tex].
[tex]\[ \Delta t = 8 - 1 = 7 \][/tex]
Step 5: Calculate the average velocity [tex]\(\bar{v}\)[/tex].
[tex]\[ \bar{v} = \frac{\Delta s}{\Delta t} = \frac{714}{7} = 102 \][/tex]
Therefore, the average velocity of the object over the interval [tex]\([1, 8]\)[/tex] is [tex]\( 102 \, \text{units of distance per unit time} \)[/tex].
### Interval [1, 7]
Repeat the steps for the interval [1, 7]:
Step 1: Evaluate the position at [tex]\( t = 1 \)[/tex] and [tex]\( t = 7 \)[/tex].
- For [tex]\( t = 1 \)[/tex]:
[tex]\[ s(1) = -172 + 102 = -70 \][/tex]
- For [tex]\( t = 7 \)[/tex]:
[tex]\[ s(7) = -172 + 714 = 542 \][/tex]
Step 2: Compute [tex]\(\Delta s\)[/tex].
[tex]\[ \Delta s = s(7) - s(1) = 542 - (-70) = 542 + 70 = 612 \][/tex]
Step 3: Compute [tex]\(\Delta t\)[/tex].
[tex]\[ \Delta t = 7 - 1 = 6 \][/tex]
Step 4: Calculate the average velocity.
[tex]\[ \bar{v} = \frac{\Delta s}{\Delta t} = \frac{612}{6} = 102 \][/tex]
Therefore, the average velocity over the interval [tex]\([1, 7]\)[/tex] is [tex]\( 102 \, \text{units of distance per unit time} \)[/tex].
### Interval [1, 6]
Repeat the process for the interval [1, 6]:
Step 1: Evaluate the position at [tex]\( t = 1 \)[/tex] and [tex]\( t = 6 \)[/tex].
- For [tex]\( t = 1 \)[/tex]:
[tex]\[ s(1) = -70 \][/tex]
- For [tex]\( t = 6 \)[/tex]:
[tex]\[ s(6) = -172 + 612 = 440 \][/tex]
Step 2: Compute [tex]\(\Delta s\)[/tex].
[tex]\[ \Delta s = s(6) - s(1) = 440 - (-70) = 440 + 70 = 510 \][/tex]
Step 3: Compute [tex]\(\Delta t\)[/tex].
[tex]\[ \Delta t = 6 - 1 = 5 \][/tex]
Step 4: Calculate the average velocity.
[tex]\[ \bar{v} = \frac{\Delta s}{\Delta t} = \frac{510}{5} = 102 \][/tex]
Therefore, the average velocity over the interval [tex]\([1, 6]\)[/tex] is [tex]\( 102 \, \text{units of distance per unit time} \)[/tex].
### Interval [1, 1+h], where [tex]\( h > 0 \)[/tex]
For the general interval [tex]\([1, 1 + h]\)[/tex]:
Step 1: Evaluate the position at [tex]\( t = 1 \)[/tex] and [tex]\( t = 1 + h \)[/tex].
- For [tex]\( t = 1 \)[/tex]:
[tex]\[ s(1) = -70 \][/tex]
- For [tex]\( t = 1 + h \)[/tex]:
[tex]\[ s(1 + h) = -172 + 102(1 + h) = -172 + 102 + 102h = -70 + 102h \][/tex]
Step 2: Compute [tex]\(\Delta s\)[/tex].
[tex]\[ \Delta s = s(1 + h) - s(1) = (-70 + 102h) - (-70) = 102h \][/tex]
Step 3: Compute [tex]\(\Delta t\)[/tex].
[tex]\[ \Delta t = (1 + h) - 1 = h \][/tex]
Step 4: Calculate the average velocity.
[tex]\[ \bar{v} = \frac{\Delta s}{\Delta t} = \frac{102h}{h} = 102 \][/tex]
Therefore, the average velocity over the interval [tex]\([1, 1 + h]\)[/tex] is [tex]\( 102 \, \text{units of distance per unit time} \)[/tex].
In summary, for all given intervals, the average velocity of the object is [tex]\( 102 \, \text{units of distance per unit time} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.