Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the length of [tex]\( A'B' \)[/tex] when given that triangles [tex]\( ABC \)[/tex] and [tex]\( A'B'C' \)[/tex] are similar, and knowing the lengths of sides [tex]\( AB = 8 \)[/tex] feet, [tex]\( BC = 12 \)[/tex] feet, and [tex]\( B'C' = 13 \)[/tex] feet, follow these steps:
1. Understand the concept of similar triangles:
- When two triangles are similar, their corresponding sides are proportional. This means that the ratios of the lengths of corresponding sides are equal.
2. Identify the given sides and their corresponding counterparts:
- [tex]\( AB \)[/tex] corresponds to [tex]\( A'B' \)[/tex]
- [tex]\( BC \)[/tex] corresponds to [tex]\( B'C' \)[/tex]
3. Set up the proportion based on the corresponding sides:
- Since [tex]\( \frac{AB}{A'B'} = \frac{BC}{B'C'} \)[/tex], we can write:
[tex]\[ \frac{8}{A'B'} = \frac{12}{13} \][/tex]
4. Solve for [tex]\( A'B' \)[/tex]:
- To find [tex]\( A'B' \)[/tex], cross-multiply to get:
[tex]\[ 8 \times 13 = 12 \times A'B' \][/tex]
- Simplify the left side:
[tex]\[ 104 = 12 \times A'B' \][/tex]
- Divide both sides by 12 to isolate [tex]\( A'B' \)[/tex]:
[tex]\[ A'B' = \frac{104}{12} \][/tex]
- Perform the division:
[tex]\[ A'B' = 8.666666666666666 \][/tex]
Therefore, the length of [tex]\( A'B' \)[/tex] is approximately [tex]\( 8.67 \)[/tex] feet.
1. Understand the concept of similar triangles:
- When two triangles are similar, their corresponding sides are proportional. This means that the ratios of the lengths of corresponding sides are equal.
2. Identify the given sides and their corresponding counterparts:
- [tex]\( AB \)[/tex] corresponds to [tex]\( A'B' \)[/tex]
- [tex]\( BC \)[/tex] corresponds to [tex]\( B'C' \)[/tex]
3. Set up the proportion based on the corresponding sides:
- Since [tex]\( \frac{AB}{A'B'} = \frac{BC}{B'C'} \)[/tex], we can write:
[tex]\[ \frac{8}{A'B'} = \frac{12}{13} \][/tex]
4. Solve for [tex]\( A'B' \)[/tex]:
- To find [tex]\( A'B' \)[/tex], cross-multiply to get:
[tex]\[ 8 \times 13 = 12 \times A'B' \][/tex]
- Simplify the left side:
[tex]\[ 104 = 12 \times A'B' \][/tex]
- Divide both sides by 12 to isolate [tex]\( A'B' \)[/tex]:
[tex]\[ A'B' = \frac{104}{12} \][/tex]
- Perform the division:
[tex]\[ A'B' = 8.666666666666666 \][/tex]
Therefore, the length of [tex]\( A'B' \)[/tex] is approximately [tex]\( 8.67 \)[/tex] feet.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.