Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the product of [tex]\((-5xy^2)\)[/tex] and [tex]\((-4x^2y)\)[/tex], follow these steps:
1. Identify the coefficients: The coefficients of the given expressions are -5 and -4, respectively.
- Multiply these coefficients together:
[tex]\[ (-5) \times (-4) = 20 \][/tex]
Therefore, the coefficient of the product is 20.
2. Identify the exponents of [tex]\(x\)[/tex]:
- In the first expression, the exponent of [tex]\(x\)[/tex] is 1.
- In the second expression, the exponent of [tex]\(x\)[/tex] is 2.
- Add these exponents together:
[tex]\[ 1 + 2 = 3 \][/tex]
Therefore, the exponent of [tex]\(x\)[/tex] in the product is 3.
3. Identify the exponents of [tex]\(y\)[/tex]:
- In the first expression, the exponent of [tex]\(y\)[/tex] is 2.
- In the second expression, the exponent of [tex]\(y\)[/tex] is 1.
- Add these exponents together:
[tex]\[ 2 + 1 = 3 \][/tex]
Therefore, the exponent of [tex]\(y\)[/tex] in the product is 3.
So, the final product and the correct answers are:
- The coefficient of the product is 20.
- The exponent of [tex]\(x\)[/tex] in the product is 3.
- The exponent of [tex]\(y\)[/tex] in the product is 3.
1. Identify the coefficients: The coefficients of the given expressions are -5 and -4, respectively.
- Multiply these coefficients together:
[tex]\[ (-5) \times (-4) = 20 \][/tex]
Therefore, the coefficient of the product is 20.
2. Identify the exponents of [tex]\(x\)[/tex]:
- In the first expression, the exponent of [tex]\(x\)[/tex] is 1.
- In the second expression, the exponent of [tex]\(x\)[/tex] is 2.
- Add these exponents together:
[tex]\[ 1 + 2 = 3 \][/tex]
Therefore, the exponent of [tex]\(x\)[/tex] in the product is 3.
3. Identify the exponents of [tex]\(y\)[/tex]:
- In the first expression, the exponent of [tex]\(y\)[/tex] is 2.
- In the second expression, the exponent of [tex]\(y\)[/tex] is 1.
- Add these exponents together:
[tex]\[ 2 + 1 = 3 \][/tex]
Therefore, the exponent of [tex]\(y\)[/tex] in the product is 3.
So, the final product and the correct answers are:
- The coefficient of the product is 20.
- The exponent of [tex]\(x\)[/tex] in the product is 3.
- The exponent of [tex]\(y\)[/tex] in the product is 3.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.