At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the product of [tex]\((-5xy^2)\)[/tex] and [tex]\((-4x^2y)\)[/tex], follow these steps:
1. Identify the coefficients: The coefficients of the given expressions are -5 and -4, respectively.
- Multiply these coefficients together:
[tex]\[ (-5) \times (-4) = 20 \][/tex]
Therefore, the coefficient of the product is 20.
2. Identify the exponents of [tex]\(x\)[/tex]:
- In the first expression, the exponent of [tex]\(x\)[/tex] is 1.
- In the second expression, the exponent of [tex]\(x\)[/tex] is 2.
- Add these exponents together:
[tex]\[ 1 + 2 = 3 \][/tex]
Therefore, the exponent of [tex]\(x\)[/tex] in the product is 3.
3. Identify the exponents of [tex]\(y\)[/tex]:
- In the first expression, the exponent of [tex]\(y\)[/tex] is 2.
- In the second expression, the exponent of [tex]\(y\)[/tex] is 1.
- Add these exponents together:
[tex]\[ 2 + 1 = 3 \][/tex]
Therefore, the exponent of [tex]\(y\)[/tex] in the product is 3.
So, the final product and the correct answers are:
- The coefficient of the product is 20.
- The exponent of [tex]\(x\)[/tex] in the product is 3.
- The exponent of [tex]\(y\)[/tex] in the product is 3.
1. Identify the coefficients: The coefficients of the given expressions are -5 and -4, respectively.
- Multiply these coefficients together:
[tex]\[ (-5) \times (-4) = 20 \][/tex]
Therefore, the coefficient of the product is 20.
2. Identify the exponents of [tex]\(x\)[/tex]:
- In the first expression, the exponent of [tex]\(x\)[/tex] is 1.
- In the second expression, the exponent of [tex]\(x\)[/tex] is 2.
- Add these exponents together:
[tex]\[ 1 + 2 = 3 \][/tex]
Therefore, the exponent of [tex]\(x\)[/tex] in the product is 3.
3. Identify the exponents of [tex]\(y\)[/tex]:
- In the first expression, the exponent of [tex]\(y\)[/tex] is 2.
- In the second expression, the exponent of [tex]\(y\)[/tex] is 1.
- Add these exponents together:
[tex]\[ 2 + 1 = 3 \][/tex]
Therefore, the exponent of [tex]\(y\)[/tex] in the product is 3.
So, the final product and the correct answers are:
- The coefficient of the product is 20.
- The exponent of [tex]\(x\)[/tex] in the product is 3.
- The exponent of [tex]\(y\)[/tex] in the product is 3.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.