Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find out how much money you will have at the end of the term with the given conditions, we can use the formula for compound interest:
[ A = P(1 + frac{r}{n})^{nt} ]
Where:
- A is the amount of money accumulated after n years, including interest.
- P is the principal amount (the initial amount of money).
- r is the annual interest rate (in decimal).
- n is the number of times that interest is compounded per year.
- t is the time the money is invested for in years.
Given:
- Principal amount (P) = $10,000
- Annual interest rate (r) = 5.75% = 0.0575
- Compounding frequency (n) = Monthly
- Time (t) = 1 year (since it's compounded monthly, it's for 1 year)
Now, let's plug these values into the formula:
[ A = 10000left(1 + frac{0.0575}{12}right)^{12 times 1} ]
Let's calculate:
[ A = 10000left(1 + frac{0.0575}{12}right)^{12} ]
[ A = 10000left(1 + frac{0.0575}{12}right)^{12} ]
[ A = 10000left(1 + frac{0.00479167}{12}right)^{12} ]
[ A = 10000left(1 + 0.000399305right)^{12} ]
[ A = 10000(1.000399305)^{12} ]
[ A ≈ 10000(1.06095) ]
[ A ≈ 10609.50 ]
So, at the end of 1 year, the amount in the certificate of deposit would be approximately $10,609.50.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.