Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

omplete the problems using multiple strategies
A $10,000 CD at 4.50% for 4 years compounded quarterly using the table on p. 15.


Sagot :

To calculate the final amount for a $10,000 CD at 4.50% interest for 4 years compounded quarterly, we'll use the compound interest formula:

[ A = Pleft(1 + frac{r}{n}right)^{nt} ]

Where:

- A is the amount of money accumulated after n years, including interest.

- P is the principal amount (the initial amount of money).

- r is the annual interest rate (in decimal).

- n is the number of times that interest is compounded per year.

- t is the time the money is invested for in years.

Given:

- Principal amount (P) = $10,000

- Annual interest rate (r) = 4.50% = 0.045

- Compounding frequency (n) = Quarterly

- Time (t) = 4 years

Now, let's plug these values into the formula:

[ A = 10000left(1 + frac{0.045}{4}right)^{4 times 4} ]

Let's calculate:

[ A = 10000left(1 + frac{0.045}{4}right)^{16} ]

[ A = 10000left(1 + frac{0.01125}{1}right)^{16} ]

[ A = 10000(1.01125)^{16} ]

[ A ≈ 10000(1.193435318) ]

[ A ≈ 11934.35 ]

So, at the end of 4 years compounded quarterly, the amount in the certificate of deposit would be approximately $11,934.35.

Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.