Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
Either [tex]x > 2[/tex], or [tex]x < -10[/tex].
Step-by-step explanation:
Make use of the following property of absolute value inequalities: given a positive number [tex]p[/tex] ([tex]p > 0[/tex]) and some algebraic expression [tex]X[/tex], the following are equivalent:
- [tex]|X| > p[/tex], and
- either [tex]X < (-p)[/tex] or [tex]X > p[/tex].
In this question, [tex]| (x + 4) / 3| > 2[/tex] would be equivalent to [tex]((x + 4) / 3) > 2[/tex] or [tex]((x + 4) / 3) < -2[/tex]. Simplify to separate [tex]x[/tex]:
[tex]\displaystyle \frac{x + 4}{3} > 2 \quad \text{or} \quad \frac{x + 4}{3} < -2[/tex].
[tex]x + 4 > 6 \quad \text{or} \quad x + 4 < -6[/tex].
[tex]x > 2 \quad \text{or} \quad x < -10[/tex].
In other words, the given inequality is satisfied if and only if either [tex]x > 2[/tex] or [tex]x < -10[/tex].
The final solution is x < -10 or x > 2.
To solve the inequality, we need to break it down into two separate inequalities:
1. (x+4)/3 > 2
2. (x+4)/3 < -2
Solve (x+4)/3 > 2:
- Multiply both sides by 3:
(x+4)/3 *3 > 2 * 3
(x+4) > 6
- Subtract 4 from both sides:
(x+4) - 4 > 6 - 4
x > 2
Solve (x+4)/3 < -2:
- Multiply both sides by 3:
(x+4)/3 *3 < -2 * 3
(x+4) < -6
- Subtract 4 from both sides:
(x+4) - 4 < -6 - 4
x < -10
Thus, the solution to the inequality |(x+4)/3| > 2 is x < -10 or x > 2.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.