Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the points of intersection of the line joining the points [tex]\((2, 4, 5)\)[/tex] and [tex]\((3, 5, -4)\)[/tex] with the specified planes, we need to examine the line in parametric form and solve for the parameter [tex]\( t \)[/tex] where the line intersects each plane.
Step-by-step solution:
1. First, determine the direction vector of the line:
[tex]\[ \text{Direction vector} = (3 - 2, 5 - 4, -4 - 5) = (1, 1, -9) \][/tex]
2. Express the line in parametric form:
[tex]\[ (x, y, z) = (2, 4, 5) + t \cdot (1, 1, -9) \][/tex]
So,
[tex]\[ x = 2 + t, \quad y = 4 + t, \quad z = 5 - 9t \][/tex]
### (a) Intersection with the xy-plane (where [tex]\( z = 0 \)[/tex])
To find the intersection with the xy-plane, set [tex]\( z = 0 \)[/tex]:
[tex]\[ 5 - 9t = 0 \implies t = \frac{5}{9} \][/tex]
Substitute [tex]\( t = \frac{5}{9} \)[/tex] back into the parametric equations for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = 2 + \frac{5}{9} = \frac{18}{9} + \frac{5}{9} = \frac{23}{9} \approx 2.56 \][/tex]
[tex]\[ y = 4 + \frac{5}{9} = \frac{36}{9} + \frac{5}{9} = \frac{41}{9} \approx 4.56 \][/tex]
Thus, the point of intersection with the xy-plane is approximately:
[tex]\[ \left(\frac{23}{9}, \frac{41}{9}, 0\right) \approx (2.56, 4.56, 0) \][/tex]
### (b) Intersection with the yz-plane (where [tex]\( x = 0 \)[/tex])
To find the intersection with the yz-plane, set [tex]\( x = 0 \)[/tex]:
[tex]\[ 2 + t = 0 \implies t = -2 \][/tex]
Substitute [tex]\( t = -2 \)[/tex] back into the parametric equations for [tex]\( y \)[/tex] and [tex]\( z \)[/tex]:
[tex]\[ y = 4 + (-2) = 2 \][/tex]
[tex]\[ z = 5 - 9(-2) = 5 + 18 = 23 \][/tex]
Thus, the point of intersection with the yz-plane is:
[tex]\[ (0, 2, 23) \][/tex]
### (c) Intersection with the zx-plane (where [tex]\( y = 0 \)[/tex])
To find the intersection with the zx-plane, set [tex]\( y = 0 \)[/tex]:
[tex]\[ 4 + t = 0 \implies t = -4 \][/tex]
Substitute [tex]\( t = -4 \)[/tex] back into the parametric equations for [tex]\( x \)[/tex] and [tex]\( z \)[/tex]:
[tex]\[ x = 2 + (-4) = -2 \][/tex]
[tex]\[ z = 5 - 9(-4) = 5 + 36 = 41 \][/tex]
Thus, the point of intersection with the zx-plane is:
[tex]\[ (-2, 0, 41) \][/tex]
### Summary of Intersection Points
1. The intersection with the xy-plane is:
[tex]\[ \left(\frac{23}{9}, \frac{41}{9}, 0\right) \approx (2.56, 4.56, 0) \][/tex]
2. The intersection with the yz-plane is:
[tex]\[ (0, 2, 23) \][/tex]
3. The intersection with the zx-plane is:
[tex]\[ (-2, 0, 41) \][/tex]
Step-by-step solution:
1. First, determine the direction vector of the line:
[tex]\[ \text{Direction vector} = (3 - 2, 5 - 4, -4 - 5) = (1, 1, -9) \][/tex]
2. Express the line in parametric form:
[tex]\[ (x, y, z) = (2, 4, 5) + t \cdot (1, 1, -9) \][/tex]
So,
[tex]\[ x = 2 + t, \quad y = 4 + t, \quad z = 5 - 9t \][/tex]
### (a) Intersection with the xy-plane (where [tex]\( z = 0 \)[/tex])
To find the intersection with the xy-plane, set [tex]\( z = 0 \)[/tex]:
[tex]\[ 5 - 9t = 0 \implies t = \frac{5}{9} \][/tex]
Substitute [tex]\( t = \frac{5}{9} \)[/tex] back into the parametric equations for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = 2 + \frac{5}{9} = \frac{18}{9} + \frac{5}{9} = \frac{23}{9} \approx 2.56 \][/tex]
[tex]\[ y = 4 + \frac{5}{9} = \frac{36}{9} + \frac{5}{9} = \frac{41}{9} \approx 4.56 \][/tex]
Thus, the point of intersection with the xy-plane is approximately:
[tex]\[ \left(\frac{23}{9}, \frac{41}{9}, 0\right) \approx (2.56, 4.56, 0) \][/tex]
### (b) Intersection with the yz-plane (where [tex]\( x = 0 \)[/tex])
To find the intersection with the yz-plane, set [tex]\( x = 0 \)[/tex]:
[tex]\[ 2 + t = 0 \implies t = -2 \][/tex]
Substitute [tex]\( t = -2 \)[/tex] back into the parametric equations for [tex]\( y \)[/tex] and [tex]\( z \)[/tex]:
[tex]\[ y = 4 + (-2) = 2 \][/tex]
[tex]\[ z = 5 - 9(-2) = 5 + 18 = 23 \][/tex]
Thus, the point of intersection with the yz-plane is:
[tex]\[ (0, 2, 23) \][/tex]
### (c) Intersection with the zx-plane (where [tex]\( y = 0 \)[/tex])
To find the intersection with the zx-plane, set [tex]\( y = 0 \)[/tex]:
[tex]\[ 4 + t = 0 \implies t = -4 \][/tex]
Substitute [tex]\( t = -4 \)[/tex] back into the parametric equations for [tex]\( x \)[/tex] and [tex]\( z \)[/tex]:
[tex]\[ x = 2 + (-4) = -2 \][/tex]
[tex]\[ z = 5 - 9(-4) = 5 + 36 = 41 \][/tex]
Thus, the point of intersection with the zx-plane is:
[tex]\[ (-2, 0, 41) \][/tex]
### Summary of Intersection Points
1. The intersection with the xy-plane is:
[tex]\[ \left(\frac{23}{9}, \frac{41}{9}, 0\right) \approx (2.56, 4.56, 0) \][/tex]
2. The intersection with the yz-plane is:
[tex]\[ (0, 2, 23) \][/tex]
3. The intersection with the zx-plane is:
[tex]\[ (-2, 0, 41) \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.