Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem of determining how many years it will take for a loan of [tex]$43,000 to grow to $[/tex]67,000 or more with an annual interest rate of 3.75%, compounded annually, we can follow these steps:
1. Identify the initial loan amount and the target amount.
- The initial loan amount: [tex]\( 43,000 \)[/tex] dollars.
- The target amount: [tex]\( 67,000 \)[/tex] dollars.
2. Understand the interest rate application.
- The interest rate is [tex]\( 3.75\% \)[/tex], which means each year the amount is multiplied by [tex]\( 1.0375 \)[/tex] (since [tex]\( 1 + 0.0375 = 1.0375 \)[/tex]).
3. Set up a compound interest formula.
- The formula for the amount [tex]\( A \)[/tex] after [tex]\( t \)[/tex] years, with an initial principal [tex]\( P \)[/tex] and an annual interest rate [tex]\( r \)[/tex], is:
[tex]\[ A = P \times (1 + r)^t \][/tex]
4. Initialize the calculations.
- Begin with the principal [tex]\( P = 43,000 \)[/tex].
5. Iterate year by year and apply the interest rate.
- Each year, multiply the current amount by [tex]\( 1.0375 \)[/tex], and count the number of years until the amount reaches or exceeds [tex]\( 67,000 \)[/tex].
6. Continue until the condition is met.
Performing this step-by-step, we find that it will take approximately 13 years for the loan amount to reach or exceed [tex]\( 67,000 \)[/tex].
Therefore, the smallest possible whole number answer for the number of years needed is [tex]\( \boxed{13} \)[/tex].
1. Identify the initial loan amount and the target amount.
- The initial loan amount: [tex]\( 43,000 \)[/tex] dollars.
- The target amount: [tex]\( 67,000 \)[/tex] dollars.
2. Understand the interest rate application.
- The interest rate is [tex]\( 3.75\% \)[/tex], which means each year the amount is multiplied by [tex]\( 1.0375 \)[/tex] (since [tex]\( 1 + 0.0375 = 1.0375 \)[/tex]).
3. Set up a compound interest formula.
- The formula for the amount [tex]\( A \)[/tex] after [tex]\( t \)[/tex] years, with an initial principal [tex]\( P \)[/tex] and an annual interest rate [tex]\( r \)[/tex], is:
[tex]\[ A = P \times (1 + r)^t \][/tex]
4. Initialize the calculations.
- Begin with the principal [tex]\( P = 43,000 \)[/tex].
5. Iterate year by year and apply the interest rate.
- Each year, multiply the current amount by [tex]\( 1.0375 \)[/tex], and count the number of years until the amount reaches or exceeds [tex]\( 67,000 \)[/tex].
6. Continue until the condition is met.
Performing this step-by-step, we find that it will take approximately 13 years for the loan amount to reach or exceed [tex]\( 67,000 \)[/tex].
Therefore, the smallest possible whole number answer for the number of years needed is [tex]\( \boxed{13} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.