Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To prove that the difference between the squares of consecutive even numbers is always a multiple of 4, let's proceed step-by-step with the algebraic expressions.
### Step 1: Define Consecutive Even Numbers
Let [tex]\( n \)[/tex] be any integer. We can define two consecutive even numbers using [tex]\( n \)[/tex] as follows:
- The first even number: [tex]\( 2n \)[/tex]
- The next consecutive even number: [tex]\( 2n + 2 \)[/tex]
### Step 2: Express the Squares of These Numbers
Now, we'll compute the square of each of these even numbers:
- Square of the first even number: [tex]\( (2n)^2 = 4n^2 \)[/tex]
- Square of the next consecutive even number: [tex]\( (2n + 2)^2 = (2n + 2)(2n + 2) = 4n^2 + 8n + 4 \)[/tex]
### Step 3: Find the Difference Between the Squares
Next, we need to find the difference between the square of the second even number and the square of the first even number:
[tex]\[ \text{Difference} = (2n + 2)^2 - (2n)^2 \][/tex]
Substitute the expressions we computed:
[tex]\[ \text{Difference} = (4n^2 + 8n + 4) - 4n^2 \][/tex]
### Step 4: Simplify the Difference
Simplify the expression by combining like terms:
[tex]\[ \text{Difference} = 4n^2 + 8n + 4 - 4n^2 \][/tex]
[tex]\[ \text{Difference} = 8n + 4 \][/tex]
### Step 5: Prove That the Difference is a Multiple of 4
The next step is to show that the simplified difference, [tex]\( 8n + 4 \)[/tex], is always a multiple of 4. We can factor out 4 from the expression:
[tex]\[ 8n + 4 = 4(2n + 1) \][/tex]
Since [tex]\( 2n + 1 \)[/tex] is an integer (because [tex]\( n \)[/tex] is an integer), it is evident that [tex]\( 8n + 4 \)[/tex] is always a multiple of 4.
### Conclusion
Therefore, we have shown algebraically that the difference between the squares of two consecutive even numbers is always a multiple of 4.
### Step 1: Define Consecutive Even Numbers
Let [tex]\( n \)[/tex] be any integer. We can define two consecutive even numbers using [tex]\( n \)[/tex] as follows:
- The first even number: [tex]\( 2n \)[/tex]
- The next consecutive even number: [tex]\( 2n + 2 \)[/tex]
### Step 2: Express the Squares of These Numbers
Now, we'll compute the square of each of these even numbers:
- Square of the first even number: [tex]\( (2n)^2 = 4n^2 \)[/tex]
- Square of the next consecutive even number: [tex]\( (2n + 2)^2 = (2n + 2)(2n + 2) = 4n^2 + 8n + 4 \)[/tex]
### Step 3: Find the Difference Between the Squares
Next, we need to find the difference between the square of the second even number and the square of the first even number:
[tex]\[ \text{Difference} = (2n + 2)^2 - (2n)^2 \][/tex]
Substitute the expressions we computed:
[tex]\[ \text{Difference} = (4n^2 + 8n + 4) - 4n^2 \][/tex]
### Step 4: Simplify the Difference
Simplify the expression by combining like terms:
[tex]\[ \text{Difference} = 4n^2 + 8n + 4 - 4n^2 \][/tex]
[tex]\[ \text{Difference} = 8n + 4 \][/tex]
### Step 5: Prove That the Difference is a Multiple of 4
The next step is to show that the simplified difference, [tex]\( 8n + 4 \)[/tex], is always a multiple of 4. We can factor out 4 from the expression:
[tex]\[ 8n + 4 = 4(2n + 1) \][/tex]
Since [tex]\( 2n + 1 \)[/tex] is an integer (because [tex]\( n \)[/tex] is an integer), it is evident that [tex]\( 8n + 4 \)[/tex] is always a multiple of 4.
### Conclusion
Therefore, we have shown algebraically that the difference between the squares of two consecutive even numbers is always a multiple of 4.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.