Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's analyze the transformations involved and how they affect the domain and range of the given function [tex]\( f(x) = |x| \)[/tex].
1. Reflection Across the X-Axis:
- The original function [tex]\( f(x) = |x| \)[/tex] outputs absolute values of [tex]\( x \)[/tex]. By reflecting this graph across the x-axis, each positive output is turned into its negative counterpart.
- The new function after reflection becomes [tex]\( f(x) = -|x| \)[/tex].
2. Translation to the Right by 6 Units:
- Translating the function [tex]\( f(x) = -|x| \)[/tex] to the right by 6 units means shifting the graph horizontally to the right.
- The new function after this transformation is [tex]\( f(x) = -|x - 6| \)[/tex].
Now let's consider the domain and range before and after these transformations:
- Domain (Original Function [tex]\( f(x) = |x| \)[/tex]):
- The domain of [tex]\( f(x) = |x| \)[/tex] is all real numbers because you can input any real number into the absolute value function.
- Thus, the domain is [tex]\( (-\infty, \infty) \)[/tex].
- Range (Original Function [tex]\( f(x) = |x| \)[/tex]):
- The range of [tex]\( f(x) = |x| \)[/tex] is all non-negative real numbers because the absolute value of any real number is always non-negative.
- Thus, the range is [tex]\( [0, \infty) \)[/tex].
- Domain (Transformed Function [tex]\( f(x) = -|x - 6| \)[/tex]):
- The domain of the transformed function remains all real numbers since neither reflecting about the x-axis nor translating right affects the set of possible [tex]\( x \)[/tex]-values we can input into the function.
- Thus, the domain is still [tex]\( (-\infty, \infty) \)[/tex].
- Range (Transformed Function [tex]\( f(x) = -|x - 6| \)[/tex]):
- Reflecting the graph across the x-axis changes all positive outputs to negative outputs. Initially, [tex]\( |x| \)[/tex] gives outputs in [tex]\( [0, \infty) \)[/tex], but now [tex]\( -|x| \)[/tex] will give outputs in [tex]\( (-\infty, 0] \)[/tex].
- Translating the graph horizontally does not affect the range as it does not alter the [tex]\( y \)[/tex]-values themselves, just their associated [tex]\( x \)[/tex]-coordinates.
- Thus, the range of the transformed function is [tex]\( (-\infty, 0] \)[/tex].
Therefore, the correct statement about the domain and range of the transformed function compared to the parent function is:
- The domain of the transformed function is the same as the parent function, but the ranges of the functions are different.
1. Reflection Across the X-Axis:
- The original function [tex]\( f(x) = |x| \)[/tex] outputs absolute values of [tex]\( x \)[/tex]. By reflecting this graph across the x-axis, each positive output is turned into its negative counterpart.
- The new function after reflection becomes [tex]\( f(x) = -|x| \)[/tex].
2. Translation to the Right by 6 Units:
- Translating the function [tex]\( f(x) = -|x| \)[/tex] to the right by 6 units means shifting the graph horizontally to the right.
- The new function after this transformation is [tex]\( f(x) = -|x - 6| \)[/tex].
Now let's consider the domain and range before and after these transformations:
- Domain (Original Function [tex]\( f(x) = |x| \)[/tex]):
- The domain of [tex]\( f(x) = |x| \)[/tex] is all real numbers because you can input any real number into the absolute value function.
- Thus, the domain is [tex]\( (-\infty, \infty) \)[/tex].
- Range (Original Function [tex]\( f(x) = |x| \)[/tex]):
- The range of [tex]\( f(x) = |x| \)[/tex] is all non-negative real numbers because the absolute value of any real number is always non-negative.
- Thus, the range is [tex]\( [0, \infty) \)[/tex].
- Domain (Transformed Function [tex]\( f(x) = -|x - 6| \)[/tex]):
- The domain of the transformed function remains all real numbers since neither reflecting about the x-axis nor translating right affects the set of possible [tex]\( x \)[/tex]-values we can input into the function.
- Thus, the domain is still [tex]\( (-\infty, \infty) \)[/tex].
- Range (Transformed Function [tex]\( f(x) = -|x - 6| \)[/tex]):
- Reflecting the graph across the x-axis changes all positive outputs to negative outputs. Initially, [tex]\( |x| \)[/tex] gives outputs in [tex]\( [0, \infty) \)[/tex], but now [tex]\( -|x| \)[/tex] will give outputs in [tex]\( (-\infty, 0] \)[/tex].
- Translating the graph horizontally does not affect the range as it does not alter the [tex]\( y \)[/tex]-values themselves, just their associated [tex]\( x \)[/tex]-coordinates.
- Thus, the range of the transformed function is [tex]\( (-\infty, 0] \)[/tex].
Therefore, the correct statement about the domain and range of the transformed function compared to the parent function is:
- The domain of the transformed function is the same as the parent function, but the ranges of the functions are different.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.